浅谈神经网络算法

简介:

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。
人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。

1.最简单的线性分类

一个最简单的分类,是在平面上画一条直线,左边为类0,右边为类1,直线表示为z=ax+by+cz=ax+by+c
这是一个分类器,输入(x,y),那么,要求的参数有三个:a,b,c。另外注意c的作用,如果没有c,这条直线一定会过原点。
最简单的神经网络
因此,我们可以设计一个简单的神经网络,包含两层,输入层有三个节点,代表x,y,1,三条线分别代表a,b,cg(z)对传入的值x进行判别,并输出结果。

z=θ0+θ1X1+θ2X2z=θ0+θ1X1+θ2X2

但是,由于z的值可能为[ ,+−∞,+∞ ],为了方便处理,需要将其压缩到一个合理的范围,还需sigmoid函数:
a(z)=11eza(z)=11−e−z

这样的激励函数,能够将刚才的区间,压缩到 [0,1][0,1]
至于如何训练,会在之后的章节中讲解。

2.多层级神经网络

刚才展示了最简单的二分类,如果有四个分类,那一条线就无法满足要求了。想象两条直线,就会将平面划分为四个区域,一个三角区域相当于两个子平面求交集。
因此直觉告诉我们,如果有多个神经元,那么这样的问题能表现为问题的“逻辑与”操作。将第一节中介绍的神经网络的输出,再做一个判断层,即多层网络。
单层感知器
但是,如何实现逻辑与呢?用下面的图一目了然:
此处输入图片的描述
仔细看下,这相当于创建一条线,除非x1x1 x2x2 都等于1,否则hθ(x)<0hθ(x)<0
进一步地,如果我们能够对区域求并集,那么总可以对不同的子区域求并。而实现并操作和与操作是类似的:
此处输入图片的描述
此处就能看到sigmoid函数的作用了,如果没有它对数值的放缩,并和与的操作就无法实现了。
输出还能作为下一级的输入,从而增加了一个隐层,产生了单隐层神经网络,再复杂一些,如果网络层数特别多,则叫做深度学习网络,简称深度学习。
此处输入图片的描述
之前针对一个线性不可分的区域,需要将其变换到更高维度的空间去处理。但如果用神经网络,你总可以通过n条直线,将整个区间围起来。只要直线数量够多,总能绘制出任意复杂的区域。每一个子区域都是凸域:
此处输入图片的描述
简直不能更酷!下面这张图总结了不同类型的神经网络具备的功能:
此处输入图片的描述
数学家证明了,双隐层神经网络能够解决任意复杂的分类问题。但我们的问题到此为止了吗?不见得!
这里还有几个问题:

  • 异或如何实现?异或肯定是不能通过一条直线区分的,因此单层网络无法实现异或,但两层(包含一个隐层)就可以了。
  • 过拟合问题:过多的隐层节点,可能会将训练集里的点全部围进去,这样系统就没有扩展性了。如何防止过拟合?
  • 如何训练:如何计算出合理的神经网络参数?(隐层节点数)

3.如何训练神经网络

如果一个平面,有6个点,分成三类。如何设计呢?
此处输入图片的描述
一种最狂暴的方法,是对每一个点都用四条线围起来,之后,再对六个区域两两取并集。形成下面这张超复杂的图:
此处输入图片的描述
解释一下为什么要有这么多个节点:
第一层:x,y再加bias,三个
第二层:每个点需要四条线围起来,加上bias,总共4*6+1=25个
第三层:一个节点处于该类的条件是在四条线的中间(交集),因此每四个点汇成一个点,24/4+1=7个
第四层:三分类问题,需要对每两个区域求并集,因此需要6/2+1=4个

但这样的解法,使用了3+25+7+4=39个节点,需要111个参数。这样的系统非常复杂,对未知节点几乎没有任何扩展性。
仔细思考这个问题, 我们能够通过更少的节点和层数,来简化这个问题嘛?只要三条直线就可以!节点数量大大减少。不仅训练效率更高,而且可扩展能力很强。对更复杂的例子,我们又不是神仙,怎么知道设计几个隐层和多少个节点呢?
所谓超参数,就是模型之外的参数,在这个例子中,就是隐层的数量和节点的数量。通常来说,线性分类器(回归)只需要两层即可,对于一般的分类问题,三层足够。
一个三层的神经网络,输入和输出节点的数量已经确定,那如何确定中间层(隐层)的节点数量呢?一般有几个经验:

  • 隐层节点数量一定要小于N-1(N为样本数)
  • 训练样本数应当是连接权(输入到第一隐层的权值数目+第一隐层到第二隐层的权值数目+...第N隐层到输出层的权值数目,不就是边的数量么)的2-10倍(也有讲5-10倍的),另外,最好将样本进行分组,对模型训练多次,也比一次性全部送入训练强很多。
  • 节点数量尽可能少,简单的网络泛化能力往往更强
  • 确定隐层节点的下限和上限,依次遍历,找到收敛速度较快,且性能较高的节点数

如何表示一个神经网络?网络有m层,每层的节点分别为node0,node1...nodemnode0,node1...nodem ,节点最多的层,有m个节点,那么我们可以将其表达为一个矩阵W,规模为mnm∗n ,内部有些值是没有定义的。

4.训练算法

线性可分

如果输入和输出是线性关系(或者是正相关),那么想象我们在调节一个参数时,当输出过大,那就把输入调小一些,反之调大一些,最后当输出和我们想要的非常接近时,训练结束。这个就好比,在平面上,如果一个点被分配到了错误的输出,就应该对直线平移和扭转,减少该直线到这个点的距离,从而实现重新分区。
进一步地,如果向量的多个分量互相独立,那么方法也和上面的类似x1=>y1,x2=>y2x1=>y1,x2=>y2 ,分别调节x1x1 x2x2 的参数,最终让结果接近,训练结束。
此处输入图片的描述
而一个感知器结构可表示如下:
感知器结构
反思上面的过程,我们实际上是在衡量误差,根据误差来修改权重。

线性不可分

如果输入和输出的关系比较复杂,如二次函数y=x2y=x2 ,那当超过x=0的位置之后,反而成了递增了,此时一个线性的判断函数就不起作用了。因此,上面的方法,不能推广到所有的前馈网络中。
怎么办?那就只能使用梯度(LMS)法了。
梯度法,是对于样本集X1,X2..XnX1,X2..Xn ,找到一个WW∗ ,使得f(WX˙i)Xif(W∗X˙i)Xi 与输出YiYi 尽可能接近,其中ff 是激励函数。误差表示为:

e=12i=1n(YiYi)2e=12∑i=1n(Yi−Yi∗)2

为了能够调节误差e,使之尽可能小,则需要求其导数,发现其下降的方向:
gradwe=eW=k=1nekWgradwe=∂e∂W=∑k=1n∂ek∂W

其中:
ek=12(YkYk)2ek=12(Yk−Yk−)2

对偏导进行求解:
此处输入图片的描述
每次迭代的计算公式为:
此处输入图片的描述
最终:
此处输入图片的描述
其几何意义就是,误差的偏导,等于在 XkXk 位置上的值,乘以误差,再乘以激励函数的偏导。
所以,每次的权重矩阵 WW 的修改,应当通过求误差的偏导(梯度)来实现。比之前的直接通过误差来调整,具备更好的适应性。
但是,这样的梯度法,对于实际学习来说,效率还是太慢,我们需要更快的收敛方法。

BP算法

BP算法就是所谓的反向传播算法,它将误差进行反向传播,从而获取更高的学习效率。这很像烽火台,如果前线战败了,那么消息就通过烽火台传递回指挥部,指挥部去反思问题,最终改变策略。
但这带来一个问题,中间层的误差怎么计算?我们能简单地将权重和残差的乘积,返回给上一层节点(这种想法真暴力,从左到右和从右到左是一样的)。
此处输入图片的描述

这相当于三次传播:

-第一步:从前向后传播FP
-第二步:得到值z,误差为y,将误差反向传播,获得每个节点的偏差$\sigma$
-第三步:再次正向传播,通过上一步的$\sigma$,再乘以步长,修改每一个神经元突触的权重。

下面一张图展示了完整的BP算法的过程,我看了不下20遍:
此处输入图片的描述
更有趣的是,sigmoid求导之后,特别像高斯(正态)分布,而且sigmoid求导非常容易。

5.总结

这样的一篇文章真是够长了,原本还想再介绍一个神经网络的Python实现,可是考虑到篇幅的限制,最终作罢。在下一期继续介绍如何实现BP神经网络和RNN(递归神经网络)。


作者:热情的沙漠
出处:http://www.cnblogs.com/buptzym/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

分类: 算法

本文转自FerventDesert博客园博客,原文链接:http://www.cnblogs.com/buptzym/p/5437973.html,如需转载请自行联系原作者
目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
24天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
79 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
23天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
51 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
19天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
45 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
11天前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
35 2
|
19天前
|
机器学习/深度学习 人工智能 算法
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
38 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1天前
|
机器学习/深度学习 自然语言处理 算法
神经网络算法以及应用场景和基本语法
神经网络算法以及应用场景和基本语法
5 0
|
1天前
|
SQL 负载均衡 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第3天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将介绍一些常见的网络安全漏洞,并提供一些预防措施和解决方案。同时,我们还将讨论加密技术的作用和应用,以及如何提高个人和组织的安全意识。通过这些知识的分享,我们希望能够帮助读者更好地理解和应对网络安全挑战。

热门文章

最新文章