浅谈神经网络算法

简介:

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。
人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。

1.最简单的线性分类

一个最简单的分类,是在平面上画一条直线,左边为类0,右边为类1,直线表示为 z = a x + b y + c
这是一个分类器,输入(x,y),那么,要求的参数有三个:a,b,c。另外注意c的作用,如果没有c,这条直线一定会过原点。
最简单的神经网络
因此,我们可以设计一个简单的神经网络,包含两层,输入层有三个节点,代表x,y,1,三条线分别代表a,b,cg(z)对传入的值x进行判别,并输出结果。

z = θ 0 + θ 1 X 1 + θ 2 X 2

但是,由于z的值可能为[ , + ],为了方便处理,需要将其压缩到一个合理的范围,还需sigmoid函数:
a ( z ) = 1 1 e z

这样的激励函数,能够将刚才的区间,压缩到 [ 0 , 1 ]
至于如何训练,会在之后的章节中讲解。

2.多层级神经网络

刚才展示了最简单的二分类,如果有四个分类,那一条线就无法满足要求了。想象两条直线,就会将平面划分为四个区域,一个三角区域相当于两个子平面求交集。
因此直觉告诉我们,如果有多个神经元,那么这样的问题能表现为问题的“逻辑与”操作。将第一节中介绍的神经网络的输出,再做一个判断层,即多层网络。
单层感知器
但是,如何实现逻辑与呢?用下面的图一目了然:
此处输入图片的描述
仔细看下,这相当于创建一条线,除非 x 1 x 2 都等于1,否则 h θ ( x ) < 0
进一步地,如果我们能够对区域求并集,那么总可以对不同的子区域求并。而实现并操作和与操作是类似的:
此处输入图片的描述
此处就能看到sigmoid函数的作用了,如果没有它对数值的放缩,并和与的操作就无法实现了。
输出还能作为下一级的输入,从而增加了一个隐层,产生了单隐层神经网络,再复杂一些,如果网络层数特别多,则叫做深度学习网络,简称深度学习。
此处输入图片的描述
之前针对一个线性不可分的区域,需要将其变换到更高维度的空间去处理。但如果用神经网络,你总可以通过n条直线,将整个区间围起来。只要直线数量够多,总能绘制出任意复杂的区域。每一个子区域都是凸域:
此处输入图片的描述
简直不能更酷!下面这张图总结了不同类型的神经网络具备的功能:
此处输入图片的描述
数学家证明了,双隐层神经网络能够解决任意复杂的分类问题。但我们的问题到此为止了吗?不见得!
这里还有几个问题:

  • 异或如何实现?异或肯定是不能通过一条直线区分的,因此单层网络无法实现异或,但两层(包含一个隐层)就可以了。
  • 过拟合问题:过多的隐层节点,可能会将训练集里的点全部围进去,这样系统就没有扩展性了。如何防止过拟合?
  • 如何训练:如何计算出合理的神经网络参数?(隐层节点数)

3.如何训练神经网络

如果一个平面,有6个点,分成三类。如何设计呢?
此处输入图片的描述
一种最狂暴的方法,是对每一个点都用四条线围起来,之后,再对六个区域两两取并集。形成下面这张超复杂的图:
此处输入图片的描述
解释一下为什么要有这么多个节点:
第一层:x,y再加bias,三个
第二层:每个点需要四条线围起来,加上bias,总共4*6+1=25个
第三层:一个节点处于该类的条件是在四条线的中间(交集),因此每四个点汇成一个点,24/4+1=7个
第四层:三分类问题,需要对每两个区域求并集,因此需要6/2+1=4个

但这样的解法,使用了3+25+7+4=39个节点,需要111个参数。这样的系统非常复杂,对未知节点几乎没有任何扩展性。
仔细思考这个问题, 我们能够通过更少的节点和层数,来简化这个问题嘛?只要三条直线就可以!节点数量大大减少。不仅训练效率更高,而且可扩展能力很强。对更复杂的例子,我们又不是神仙,怎么知道设计几个隐层和多少个节点呢?
所谓超参数,就是模型之外的参数,在这个例子中,就是隐层的数量和节点的数量。通常来说,线性分类器(回归)只需要两层即可,对于一般的分类问题,三层足够。
一个三层的神经网络,输入和输出节点的数量已经确定,那如何确定中间层(隐层)的节点数量呢?一般有几个经验:

  • 隐层节点数量一定要小于N-1(N为样本数)
  • 训练样本数应当是连接权(输入到第一隐层的权值数目+第一隐层到第二隐层的权值数目+...第N隐层到输出层的权值数目,不就是边的数量么)的2-10倍(也有讲5-10倍的),另外,最好将样本进行分组,对模型训练多次,也比一次性全部送入训练强很多。
  • 节点数量尽可能少,简单的网络泛化能力往往更强
  • 确定隐层节点的下限和上限,依次遍历,找到收敛速度较快,且性能较高的节点数

如何表示一个神经网络?网络有m层,每层的节点分别为 n o d e 0 , n o d e 1 . . . n o d e m ,节点最多的层,有m个节点,那么我们可以将其表达为一个矩阵W,规模为 m n ,内部有些值是没有定义的。

4.训练算法

线性可分

如果输入和输出是线性关系(或者是正相关),那么想象我们在调节一个参数时,当输出过大,那就把输入调小一些,反之调大一些,最后当输出和我们想要的非常接近时,训练结束。这个就好比,在平面上,如果一个点被分配到了错误的输出,就应该对直线平移和扭转,减少该直线到这个点的距离,从而实现重新分区。
进一步地,如果向量的多个分量互相独立,那么方法也和上面的类似 x 1 => y 1 , x 2 => y 2 ,分别调节 x 1 x 2 的参数,最终让结果接近,训练结束。
此处输入图片的描述
而一个感知器结构可表示如下:
感知器结构
反思上面的过程,我们实际上是在衡量误差,根据误差来修改权重。

线性不可分

如果输入和输出的关系比较复杂,如二次函数 y = x 2 ,那当超过x=0的位置之后,反而成了递增了,此时一个线性的判断函数就不起作用了。因此,上面的方法,不能推广到所有的前馈网络中。
怎么办?那就只能使用梯度(LMS)法了。
梯度法,是对于样本集 X 1 , X 2 . . X n ,找到一个 W ,使得 f ( W X ˙ i ) X i 与输出 Y i 尽可能接近,其中 f 是激励函数。误差表示为:

e = 1 2 i = 1 n ( Y i Y i ) 2

为了能够调节误差e,使之尽可能小,则需要求其导数,发现其下降的方向:
g r a d w e = e W = k = 1 n e k W

其中:
e k = 1 2 ( Y k Y k ) 2

对偏导进行求解:
此处输入图片的描述
每次迭代的计算公式为:
此处输入图片的描述
最终:
此处输入图片的描述
其几何意义就是,误差的偏导,等于在 X k 位置上的值,乘以误差,再乘以激励函数的偏导。
所以,每次的权重矩阵 W 的修改,应当通过求误差的偏导(梯度)来实现。比之前的直接通过误差来调整,具备更好的适应性。
但是,这样的梯度法,对于实际学习来说,效率还是太慢,我们需要更快的收敛方法。

BP算法

BP算法就是所谓的反向传播算法,它将误差进行反向传播,从而获取更高的学习效率。这很像烽火台,如果前线战败了,那么消息就通过烽火台传递回指挥部,指挥部去反思问题,最终改变策略。
但这带来一个问题,中间层的误差怎么计算?我们能简单地将权重和残差的乘积,返回给上一层节点(这种想法真暴力,从左到右和从右到左是一样的)。
此处输入图片的描述

这相当于三次传播:

-第一步:从前向后传播FP
-第二步:得到值z,误差为y,将误差反向传播,获得每个节点的偏差$\sigma$
-第三步:再次正向传播,通过上一步的$\sigma$,再乘以步长,修改每一个神经元突触的权重。

下面一张图展示了完整的BP算法的过程,我看了不下20遍:
此处输入图片的描述
更有趣的是,sigmoid求导之后,特别像高斯(正态)分布,而且sigmoid求导非常容易。

5.总结

这样的一篇文章真是够长了,原本还想再介绍一个神经网络的Python实现,可是考虑到篇幅的限制,最终作罢。在下一期继续介绍如何实现BP神经网络和RNN(递归神经网络)。


作者:热情的沙漠
出处:http://www.cnblogs.com/buptzym/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

分类: 算法

本文转自FerventDesert博客园博客,原文链接:http://www.cnblogs.com/buptzym/p/5437973.html,如需转载请自行联系原作者
目录
相关文章
|
15天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
190 55
|
6天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
124 80
|
25天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
130 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
24天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
126 30
|
11天前
|
JSON 算法 Java
Nettyの网络聊天室&扩展序列化算法
通过本文的介绍,我们详细讲解了如何使用Netty构建一个简单的网络聊天室,并扩展序列化算法以提高数据传输效率。Netty的高性能和灵活性使其成为实现各种网络应用的理想选择。希望本文能帮助您更好地理解和使用Netty进行网络编程。
30 12
|
1月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
18天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
21天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。

热门文章

最新文章