浅谈神经网络算法

简介:

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包含反馈和递归。
人工智能的一大重要应用,是分类问题。本文通过分类的例子,来介绍神经网络。

1.最简单的线性分类

一个最简单的分类,是在平面上画一条直线,左边为类0,右边为类1,直线表示为 z=ax+by+c
这是一个分类器,输入(x,y),那么,要求的参数有三个:a,b,c。另外注意c的作用,如果没有c,这条直线一定会过原点。
最简单的神经网络
因此,我们可以设计一个简单的神经网络,包含两层,输入层有三个节点,代表x,y,1,三条线分别代表a,b,cg(z)对传入的值x进行判别,并输出结果。

z=θ0+θ1X1+θ2X2

但是,由于z的值可能为[ ,+ ],为了方便处理,需要将其压缩到一个合理的范围,还需sigmoid函数:
a(z)=11ez

这样的激励函数,能够将刚才的区间,压缩到 [0,1]
至于如何训练,会在之后的章节中讲解。

2.多层级神经网络

刚才展示了最简单的二分类,如果有四个分类,那一条线就无法满足要求了。想象两条直线,就会将平面划分为四个区域,一个三角区域相当于两个子平面求交集。
因此直觉告诉我们,如果有多个神经元,那么这样的问题能表现为问题的“逻辑与”操作。将第一节中介绍的神经网络的输出,再做一个判断层,即多层网络。
单层感知器
但是,如何实现逻辑与呢?用下面的图一目了然:
此处输入图片的描述
仔细看下,这相当于创建一条线,除非 x1 x2 都等于1,否则 hθ(x)<0
进一步地,如果我们能够对区域求并集,那么总可以对不同的子区域求并。而实现并操作和与操作是类似的:
此处输入图片的描述
此处就能看到sigmoid函数的作用了,如果没有它对数值的放缩,并和与的操作就无法实现了。
输出还能作为下一级的输入,从而增加了一个隐层,产生了单隐层神经网络,再复杂一些,如果网络层数特别多,则叫做深度学习网络,简称深度学习。
此处输入图片的描述
之前针对一个线性不可分的区域,需要将其变换到更高维度的空间去处理。但如果用神经网络,你总可以通过n条直线,将整个区间围起来。只要直线数量够多,总能绘制出任意复杂的区域。每一个子区域都是凸域:
此处输入图片的描述
简直不能更酷!下面这张图总结了不同类型的神经网络具备的功能:
此处输入图片的描述
数学家证明了,双隐层神经网络能够解决任意复杂的分类问题。但我们的问题到此为止了吗?不见得!
这里还有几个问题:

  • 异或如何实现?异或肯定是不能通过一条直线区分的,因此单层网络无法实现异或,但两层(包含一个隐层)就可以了。
  • 过拟合问题:过多的隐层节点,可能会将训练集里的点全部围进去,这样系统就没有扩展性了。如何防止过拟合?
  • 如何训练:如何计算出合理的神经网络参数?(隐层节点数)

3.如何训练神经网络

如果一个平面,有6个点,分成三类。如何设计呢?
此处输入图片的描述
一种最狂暴的方法,是对每一个点都用四条线围起来,之后,再对六个区域两两取并集。形成下面这张超复杂的图:
此处输入图片的描述
解释一下为什么要有这么多个节点:
第一层:x,y再加bias,三个
第二层:每个点需要四条线围起来,加上bias,总共4*6+1=25个
第三层:一个节点处于该类的条件是在四条线的中间(交集),因此每四个点汇成一个点,24/4+1=7个
第四层:三分类问题,需要对每两个区域求并集,因此需要6/2+1=4个

但这样的解法,使用了3+25+7+4=39个节点,需要111个参数。这样的系统非常复杂,对未知节点几乎没有任何扩展性。
仔细思考这个问题, 我们能够通过更少的节点和层数,来简化这个问题嘛?只要三条直线就可以!节点数量大大减少。不仅训练效率更高,而且可扩展能力很强。对更复杂的例子,我们又不是神仙,怎么知道设计几个隐层和多少个节点呢?
所谓超参数,就是模型之外的参数,在这个例子中,就是隐层的数量和节点的数量。通常来说,线性分类器(回归)只需要两层即可,对于一般的分类问题,三层足够。
一个三层的神经网络,输入和输出节点的数量已经确定,那如何确定中间层(隐层)的节点数量呢?一般有几个经验:

  • 隐层节点数量一定要小于N-1(N为样本数)
  • 训练样本数应当是连接权(输入到第一隐层的权值数目+第一隐层到第二隐层的权值数目+...第N隐层到输出层的权值数目,不就是边的数量么)的2-10倍(也有讲5-10倍的),另外,最好将样本进行分组,对模型训练多次,也比一次性全部送入训练强很多。
  • 节点数量尽可能少,简单的网络泛化能力往往更强
  • 确定隐层节点的下限和上限,依次遍历,找到收敛速度较快,且性能较高的节点数

如何表示一个神经网络?网络有m层,每层的节点分别为 node0,node1...nodem ,节点最多的层,有m个节点,那么我们可以将其表达为一个矩阵W,规模为 mn ,内部有些值是没有定义的。

4.训练算法

线性可分

如果输入和输出是线性关系(或者是正相关),那么想象我们在调节一个参数时,当输出过大,那就把输入调小一些,反之调大一些,最后当输出和我们想要的非常接近时,训练结束。这个就好比,在平面上,如果一个点被分配到了错误的输出,就应该对直线平移和扭转,减少该直线到这个点的距离,从而实现重新分区。
进一步地,如果向量的多个分量互相独立,那么方法也和上面的类似 x1=>y1,x2=>y2 ,分别调节 x1 x2 的参数,最终让结果接近,训练结束。
此处输入图片的描述
而一个感知器结构可表示如下:
感知器结构
反思上面的过程,我们实际上是在衡量误差,根据误差来修改权重。

线性不可分

如果输入和输出的关系比较复杂,如二次函数 y=x2 ,那当超过x=0的位置之后,反而成了递增了,此时一个线性的判断函数就不起作用了。因此,上面的方法,不能推广到所有的前馈网络中。
怎么办?那就只能使用梯度(LMS)法了。
梯度法,是对于样本集 X1,X2..Xn ,找到一个 W ,使得 f(W˙Xi)Xi 与输出 Yi 尽可能接近,其中 f 是激励函数。误差表示为:

e=12ni=1(YiYi)2

为了能够调节误差e,使之尽可能小,则需要求其导数,发现其下降的方向:
gradwe=eW=nk=1ekW

其中:
ek=12(YkYk)2

对偏导进行求解:
此处输入图片的描述
每次迭代的计算公式为:
此处输入图片的描述
最终:
此处输入图片的描述
其几何意义就是,误差的偏导,等于在 Xk 位置上的值,乘以误差,再乘以激励函数的偏导。
所以,每次的权重矩阵 W 的修改,应当通过求误差的偏导(梯度)来实现。比之前的直接通过误差来调整,具备更好的适应性。
但是,这样的梯度法,对于实际学习来说,效率还是太慢,我们需要更快的收敛方法。

BP算法

BP算法就是所谓的反向传播算法,它将误差进行反向传播,从而获取更高的学习效率。这很像烽火台,如果前线战败了,那么消息就通过烽火台传递回指挥部,指挥部去反思问题,最终改变策略。
但这带来一个问题,中间层的误差怎么计算?我们能简单地将权重和残差的乘积,返回给上一层节点(这种想法真暴力,从左到右和从右到左是一样的)。
此处输入图片的描述

这相当于三次传播:

-第一步:从前向后传播FP
-第二步:得到值z,误差为y,将误差反向传播,获得每个节点的偏差$\sigma$
-第三步:再次正向传播,通过上一步的$\sigma$,再乘以步长,修改每一个神经元突触的权重。
AI 代码解读

下面一张图展示了完整的BP算法的过程,我看了不下20遍:
此处输入图片的描述
更有趣的是,sigmoid求导之后,特别像高斯(正态)分布,而且sigmoid求导非常容易。

5.总结

这样的一篇文章真是够长了,原本还想再介绍一个神经网络的Python实现,可是考虑到篇幅的限制,最终作罢。在下一期继续介绍如何实现BP神经网络和RNN(递归神经网络)。


作者:热情的沙漠
出处:http://www.cnblogs.com/buptzym/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

分类: 算法

本文转自FerventDesert博客园博客,原文链接:http://www.cnblogs.com/buptzym/p/5437973.html,如需转载请自行联系原作者
目录
打赏
0
0
0
0
20
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
191 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
27 10
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于 C# 网络套接字算法的局域网实时监控技术探究
在数字化办公与网络安全需求增长的背景下,局域网实时监控成为企业管理和安全防护的关键。本文介绍C#网络套接字算法在局域网实时监控中的应用,涵盖套接字创建、绑定监听、连接建立和数据传输等操作,并通过代码示例展示其实现方式。服务端和客户端通过套接字进行屏幕截图等数据的实时传输,保障网络稳定与信息安全。同时,文章探讨了算法的优缺点及优化方向,如异步编程、数据压缩与缓存、错误处理与重传机制,以提升系统性能。
23 2
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
228 80
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等