MapReduce的手机流量统计的案例

简介:

1.程序需要的材料

文件中各个字段的含义,其中第6,7,8,9是要统计的流量相关的字段.

文件内容:

复制代码
    13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
    13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200
    13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200
    13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    200
    18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    视频网站    15    12    1527    2106    200
    84138413    5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    200
    13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200
    15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    200
    13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    200
    13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    200
    15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    200
    15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    200
    13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    200
    13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    200
    13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    200
    13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    200
    13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    200
    18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    200
    13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    200
    13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    200
    13823070001    20-7C-8F-70-68-1F:CMCC    120.196.100.99            6    3    360    180    200
    13600217502    00-1F-64-E2-E8-B1:CMCC    120.196.100.55            18    138    1080    186852    200
复制代码

二.程序:

复制代码
  1 package mapreducejob;
  2 
  3 /**
  4  * 老师给的元数据信息如下:
  5  *  1363157985066     13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
  6  *    1363157995052     13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200
  7  *    1363157991076     13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200
  8  *  第六个字段是上行数据包数.
  9  *  第七个字段是下行数据包数
 10  *  第八个是上行总流量
 11  *  第九个是下行总流量
 12  */
 13 
 14 import java.io.DataInput;
 15 import java.io.DataOutput;
 16 import java.io.IOException;
 17 
 18 import org.apache.hadoop.conf.Configuration;
 19 import org.apache.hadoop.fs.Path;
 20 import org.apache.hadoop.io.LongWritable;
 21 import org.apache.hadoop.io.Text;
 22 import org.apache.hadoop.io.Writable;
 23 import org.apache.hadoop.mapreduce.Job;
 24 import org.apache.hadoop.mapreduce.Mapper;
 25 import org.apache.hadoop.mapreduce.Reducer;
 26 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 27 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 28 
 29 public class TrafficApp {
 30 
 31     public static void main(String[] args) throws Exception {
 32         Job job = Job.getInstance(new Configuration(),
 33                 TrafficApp.class.getSimpleName());
 34         job.setJarByClass(TrafficApp.class);// 通过jar包运行.
 35 
 36         FileInputFormat.setInputPaths(job, args[0]);// 数据输入,指定数据源
 37 
 38         job.setMapperClass(MyMapper.class);// 给job设置map
 39         job.setMapOutputKeyClass(Text.class);
 40         job.setMapOutputValueClass(TrafficWritable.class);
 41 
 42         job.setReducerClass(MyReducer.class);
 43         job.setOutputKeyClass(Text.class);
 44         job.setOutputValueClass(TrafficWritable.class);
 45 
 46         FileOutputFormat.setOutputPath(job, new Path(args[1]));
 47 
 48         job.waitForCompletion(true);// 在集群中运行
 49     }
 50 
 51     public static class MyMapper extends
 52             Mapper<LongWritable, Text, Text, TrafficWritable> {
 53         // 这四个参数分别是<k1,v1>和<k2,v2>
 54         // k1代表的是字节的偏移量,v1是原始数据. k2是手机号.v2是每一次的通话流量
 55         Text k2 = new Text();// new 一个作为k2手机号.
 56         TrafficWritable v2 = new TrafficWritable();// new 一个作为v2
 57 
 58         @Override
 59         protected void map(
 60                 LongWritable key,
 61                 Text value,
 62                 Mapper<LongWritable, Text, Text, TrafficWritable>.Context context)
 63                 throws IOException, InterruptedException {
 64             String line = value.toString();
 65             String[] splited = line.split("\t");// 以制表符作为拆分符得到一个字节数组.
 66             // 通过原始数据文件可以看到这个里面有11个字段,所以这个拆分的数组长度为11
 67             k2.set(splited[1]);// k2是手机号,在这个数组中是第二个.
 68             v2.set(splited[6], splited[7], splited[8], splited[9]);// v2是代表四个流量
 69             // 对应这个被拆分数组的第6,7,8,9个.
 70             context.write(k2, v2);
 71         }
 72 
 73     }
 74 
 75     public static class MyReducer extends
 76             Reducer<Text, TrafficWritable, Text, TrafficWritable> {
 77         // 四个参数分别是<k2,v2> <k3,v3>
 78         // k2是手机号,v2是流量TrafficWritable k3是手机号,v3是流量汇总.
 79         TrafficWritable v3 = new TrafficWritable();
 80 
 81         @Override
 82         protected void reduce(
 83                 Text k2,
 84                 Iterable<TrafficWritable> v2s,
 85                 Reducer<Text, TrafficWritable, Text, TrafficWritable>.Context context)
 86                 throws IOException, InterruptedException {
 87             // reduce方法的第一个形参是k2,第二个形参是v2s,第三个形参是一个context上下文
 88             // v2s是流量集合.我们在reduce方法中要做的就是把v2汇总起来变成v3.
 89             long t1 = 0L;
 90             long t2 = 0L;
 91             long t3 = 0L;
 92             long t4 = 0L;
 93             for (TrafficWritable v2 : v2s) {
 94                 t1 += v2.t1;
 95                 t2 += v2.t2;
 96                 t3 += v2.t3;
 97                 t4 += v2.t4;
 98             }
 99             v3.set(t1, t2, t3, t4);//构造v3
100             context.write(k2, v3);
101         }
102 
103     }
104 
105     /**
106      * 针对流量设置一个流量类. 第六个字段是上行数据包数. 第七个字段是下行数据包数. 第八个是上行总流量. 第九个是下行总流量
107      *
108      */
109     static class TrafficWritable implements Writable {
110         // 这个类是流量统计类,这个类包含了该手机号的上传和下载的流量
111         // 在MapReduce中的键值对中代表的是v3,有四列组成.
112         long t1;
113         long t2;
114         long t3;
115         long t4;
116 
117         // 再搞一个无产的构造函数,否则容易出错
118         public TrafficWritable() {
119         }
120 
121         public void set(long t1, long t2, long t3, long t4) {
122             // 赋值的方法,这个地方是传入的long类型.
123             this.t1 = t1;
124             this.t2 = t2;
125             this.t3 = t3;
126             this.t4 = t4;
127         }
128 
129         public void set(String t1, String t2, String t3, String t4) {
130             // 赋值的方法,这个地方是传入的String类型.
131             this.t1 = Long.parseLong(t1);
132             this.t2 = Long.parseLong(t2);
133             this.t3 = Long.parseLong(t3);
134             this.t4 = Long.parseLong(t4);
135         }
136 
137         public void readFields(DataInput in) throws IOException {
138             // 四列都通过in.readLong()读进来.
139             this.t1 = in.readLong();
140             this.t2 = in.readLong();
141             this.t3 = in.readLong();
142             this.t4 = in.readLong();
143         }
144 
145         public void write(DataOutput out) throws IOException {
146             // 这个对象有四列,必须要把四列都给写出去.
147             out.writeLong(t1);
148             out.writeLong(t2);
149             out.writeLong(t3);
150             out.writeLong(t4);
151         }
152 
153         public String toString() {
154             // 在Reduce阶段会用到这个方法,否则输出的是哈希编码
155             return this.t1 + "\t" + this.t2 + "\t" + this.t3 + "\t" + this.t4;
156         }
157     }
158 
159 }
复制代码

//===============================================================

代码二:

复制代码
  1 package mapreduce;
  2 
  3 import java.io.DataInput;
  4 import java.io.DataOutput;
  5 import java.io.IOException;
  6 
  7 import org.apache.hadoop.conf.Configuration;
  8 import org.apache.hadoop.fs.Path;
  9 import org.apache.hadoop.io.LongWritable;
 10 import org.apache.hadoop.io.Text;
 11 import org.apache.hadoop.io.Writable;
 12 import org.apache.hadoop.mapreduce.Job;
 13 import org.apache.hadoop.mapreduce.Mapper;
 14 import org.apache.hadoop.mapreduce.Partitioner;
 15 import org.apache.hadoop.mapreduce.Reducer;
 16 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 17 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 18 
 19 public class TrafficApp {
 20     public static void main(String[] args) throws Exception {
 21         Job job = Job.getInstance(new Configuration(), TrafficApp.class.getSimpleName());
 22         job.setJarByClass(TrafficApp.class);
 23         
 24         FileInputFormat.setInputPaths(job, args[0]);
 25         
 26         job.setMapperClass(TrafficMapper.class);
 27         job.setMapOutputKeyClass(Text.class);
 28         job.setMapOutputValueClass(TrafficWritable.class);
 29         
 30         job.setNumReduceTasks(2);//设定Reduce的数量为2
 31         job.setPartitionerClass(TrafficPartitioner.class);//设定一个Partitioner的类.
 32         /*
 33          *Partitioner是如何实现不同的Map输出分配到不同的Reduce中?
 34          *在不适用指定的Partitioner时,有 一个默认的Partitioner.
 35          *就是HashPartitioner. 
 36          *其只有一行代码,其意思就是过来的key,不管是什么,模numberReduceTasks之后 返回值就是reduce任务的编号.
 37          *numberReduceTasks的默认值是1.  任何一个数模1(取余数)都是0. 
 38          *这个地方0就是取编号为0的Reduce.(Reduce从0开始编号.) 
 39          */
 40         
 41         job.setReducerClass(TrafficReducer.class);
 42         job.setOutputKeyClass(Text.class);
 43         job.setOutputValueClass(TrafficWritable.class);
 44         
 45         FileOutputFormat.setOutputPath(job, new Path(args[1]));
 46         job.waitForCompletion(true);
 47     }
 48     
 49     public static class TrafficPartitioner extends Partitioner<Text,TrafficWritable>{//k2,v2
 50 
 51         @Override
 52         public int getPartition(Text key, TrafficWritable value,int numPartitions) {
 53             long phoneNumber = Long.parseLong(key.toString());
 54             return (int)(phoneNumber%numPartitions);
 55         }
 56         
 57     }
 58     
 59     
 60     /**
 61      * 第一个参数是LongWritable类型是文本一行数据开头的字节数
 62      * 第二个参数是文本中的一行数据  Text类型
 63      * 第三个参数是要输出的手机号  Text类型
 64      * 第四个参数是需要我们自定义的流量类型TrafficWritable
 65      * @author ABC
 66      *
 67      */
 68     public static class TrafficMapper extends Mapper<LongWritable, Text, Text, TrafficWritable>{
 69         Text k2 = new Text();
 70         TrafficWritable v2 = null;
 71         @Override
 72         protected void map(LongWritable key,Text value,    Mapper<LongWritable, Text, Text, TrafficWritable>.Context context)
 73                 throws IOException, InterruptedException {
 74             String line = value.toString();
 75             String[] splited = line.split("\t");
 76             
 77             k2.set(splited[1]);//这个值对应的是手机号码
 78             v2 = new TrafficWritable(splited[6], splited[7], splited[8], splited[9]);
 79             context.write(k2, v2);
 80         }
 81         
 82     }
 83     
 84     public static class TrafficReducer extends Reducer <Text, TrafficWritable, Text, TrafficWritable>{
 85         @Override
 86         protected void reduce(Text k2,Iterable<TrafficWritable> v2s,
 87                 Reducer<Text, TrafficWritable, Text, TrafficWritable>.Context context)
 88                 throws IOException, InterruptedException {
 89             //遍历v2s 流量都这个集合里面
 90             long t1 = 0L;
 91             long t2 = 0L;
 92             long t3 = 0L;
 93             long t4 = 0L;
 94             
 95             for (TrafficWritable v2 : v2s) {
 96                 t1 += v2.getT1();
 97                 t2 += v2.getT2();
 98                 t3 += v2.getT3();
 99                 t4 += v2.getT4();
100             }
101             TrafficWritable v3 = new TrafficWritable(t1, t2, t3, t4);
102             context.write(k2, v3);
103         }
104     }
105     
106     public static class TrafficWritable implements Writable{
107         private long t1;
108         private long t2;
109         private long t3;
110         private long t4;
111         //写两个构造方法,一个是有参数的构造方法,一个是无参数的构造方法.
112         //必须要有 一个无参数的构造方法,否则程序运行会报错.
113         
114         public TrafficWritable(){
115             super();
116         }
117         
118         public TrafficWritable(long t1, long t2, long t3, long t4) {
119             super();
120             this.t1 = t1;
121             this.t2 = t2;
122             this.t3 = t3;
123             this.t4 = t4;
124         }
125         //在程序中读取文本穿过来的都是字符串,所以再搞一个字符串类型的构造方法
126         public TrafficWritable(String t1, String t2, String t3, String t4) {
127             super();
128             this.t1 = Long.parseLong(t1);
129             this.t2 = Long.parseLong(t2);
130             this.t3 = Long.parseLong(t3);
131             this.t4 = Long.parseLong(t4);
132         }
133 
134         public void write(DataOutput out) throws IOException {
135             //对各个成员变量进行序列化
136             out.writeLong(t1);
137             out.writeLong(t2);
138             out.writeLong(t3);
139             out.writeLong(t4);
140         }
141 
142         public void readFields(DataInput in) throws IOException {
143             //对成员变量进行反序列化
144             this.t1 = in.readLong();
145             this.t2 = in.readLong();
146             this.t3 = in.readLong();
147             this.t4 = in.readLong();
148         }
149         
150         public long getT1() {
151             return t1;
152         }
153 
154         public void setT1(long t1) {
155             this.t1 = t1;
156         }
157 
158         public long getT2() {
159             return t2;
160         }
161 
162         public void setT2(long t2) {
163             this.t2 = t2;
164         }
165 
166         public long getT3() {
167             return t3;
168         }
169 
170         public void setT3(long t3) {
171             this.t3 = t3;
172         }
173 
174         public long getT4() {
175             return t4;
176         }
177 
178         public void setT4(long t4) {
179             this.t4 = t4;
180         }
181 
182         @Override
183         public String toString() {
184             return t1 + "\t" + t2 + "\t" + t3 + "\t" + t4 ;
185         }
186         
187     }
188 }
复制代码

 


本文转自SummerChill博客园博客,原文链接:http://www.cnblogs.com/DreamDrive/p/6260491.html,如需转载请自行联系原作者

相关文章
|
5月前
|
安全 Java 数据库连接
【Java每日一题】——第四十四题:综合案例:编程模拟智能手机和普通手机功能。
【Java每日一题】——第四十四题:综合案例:编程模拟智能手机和普通手机功能。
|
5月前
|
存储 分布式计算 监控
Hadoop【基础知识 01+02】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
278 2
|
2月前
|
存储 JavaScript 前端开发
看过来!准确直观显示手机充电信息的充电统计软件!
基于自制充电统计App,多设备用户可远程查看各设备充电数据。在软件内可以查看预估充电容量等信息
|
4月前
|
缓存 NoSQL Java
案例 采用Springboot默认的缓存方案Simple在三层架构中完成一个手机验证码生成校验的程序
案例 采用Springboot默认的缓存方案Simple在三层架构中完成一个手机验证码生成校验的程序
95 5
|
4月前
|
存储 分布式计算 Hadoop
MapReduce编程模型——自定义序列化类实现多指标统计
MapReduce编程模型——自定义序列化类实现多指标统计
33 0
|
4月前
|
分布式计算 数据挖掘
通过mapreduce程序统计旅游订单(wordcount升级版)
通过mapreduce程序统计旅游订单(wordcount升级版)
|
5月前
|
分布式计算 数据可视化 Hadoop
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
|
5月前
|
分布式计算 监控 Hadoop
Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
228 0
|
5月前
|
分布式计算 Hadoop 大数据
【云计算与大数据计算】Hadoop MapReduce实战之统计每个单词出现次数、单词平均长度、Grep(附源码 )
【云计算与大数据计算】Hadoop MapReduce实战之统计每个单词出现次数、单词平均长度、Grep(附源码 )
219 1
|
分布式计算 Hadoop 大数据
MapReduce 案例之数据去重
MapReduce 案例之数据去重
266 0