Linux内核中_IO,_IOR,_IOW,_IOWR宏的用法与解析【转】

简介: 转自:http://blog.csdn.net/hzn407487204/article/details/7995041 在驱动程序里, ioctl() 函数上传送的变量 cmd 是应用程序用于区别设备驱动程序请求处理内容的值。

转自:http://blog.csdn.net/hzn407487204/article/details/7995041

在驱动程序里, ioctl() 函数上传送的变量 cmd 是应用程序用于区别设备驱动程序请求处理内容的值。cmd除了可区别数字外,还包含有助于处理的几种相应信息。 cmd的大小为 32位,共分 4 个域:
     bit31~bit30 2位为 “区别读写” 区,作用是区分是读取命令还是写入命令。
     bit29~bit15 14位为 "数据大小" 区,表示 ioctl() 中的 arg 变量传送的内存大小。
     bit20~bit08  8位为 “魔数"(也称为"幻数")区,这个值用以与其它设备驱动程序的 ioctl 命令进行区别。
     bit07~bit00   8位为 "区别序号" 区,是区分命令的命令顺序序号。
像 命令码中的 “区分读写区” 里的值可能是 _IOC_NONE (0值)表示无数据传输,_IOC_READ (读),_IOC_WRITE (写) , _IOC_READ|_IOC_WRITE (双向)。
内核定义了 _IO() , _IOR() , IOW() 和 _IOWR() 这 4 个宏来辅助生成上面的 cmd 。下面分析 _IO() 的实现,其它的类似:

在 asm-generic/ioctl.h 里可以看到 _IO() 的定义

      #define _IO(type,nr)        _IOC(_IOC_NONE,(type),(nr),0)

再看 _IOC() 的定义

     #define _IOC(dir,type,nr,size) \
                   (((dir)  << _IOC_DIRSHIFT) | \
                   ((type) << _IOC_TYPESHIFT) | \
                   ((nr)   << _IOC_NRSHIFT) | \
                   ((size) << _IOC_SIZESHIFT))

可见,_IO() 的最后结果由 _IOC() 中的 4 个参数移位组合而成。
再看 _IOC_DIRSHIT 的定义

            #define _IOC_DIRSHIFT    (_IOC_SIZESHIFT+_IOC_SIZEBITS)

      _IOC_SIZESHIFT 的定义

           #define _IOC_SIZESHIFT    (_IOC_TYPESHIFT+_IOC_TYPEBITS)

      _IOC_TYPESHIF 的定义

           #define _IOC_TYPESHIFT    (_IOC_NRSHIFT+_IOC_NRBITS)

      _IOC_NRSHIFT 的定义

           #define _IOC_NRSHIFT    0

      _IOC_NRBITS 的定义

          #define _IOC_NRBITS    8

      _IOC_TYPEBITS 的定义

         #define _IOC_TYPEBITS    8

由上面的定义,往上推得到

      引 用

       _IOC_TYPESHIFT = 8

       _IOC_SIZESHIFT = 16

       _IOC_DIRSHIFT = 30

所以,(dir)  << _IOC_DIRSHIFT) 表是 dir 往左移 30 位,即移到 bit31~bit30 两位上,得到方向(读写)的属性;
       (size) << _IOC_SIZESHIFT) 位左移 16 位得到“数据大小”区;
       (type) << _IOC_TYPESHIFT) 左 移 8位得到"魔数区" ;
       (nr)   << _IOC_NRSHIFT)      左移 0 位( bit7~bit0) 。
这样,就得到了 _IO() 的宏值。

这几个宏的使用格式为

  • _IO (魔数, 基数);
  • _IOR (魔数, 基数, 变量型)
  • _IOW  (魔数, 基数, 变量型)
  • _IOWR (魔数, 基数,变量型 )

魔数 (magic number)
      魔数范围为 0~255 。通常,用英文字符 "A" ~ "Z" 或者 "a" ~ "z" 来表示。设备驱动程序从传递进来的命令获取魔数,然后与自身处理的魔数想比较,如果相同则处理,不同则不处理。魔数是拒绝误使用的初步辅助状态。设备驱动 程序可以通过 _IOC_TYPE (cmd) 来获取魔数。不同的设备驱动程序最好设置不同的魔数,但并不是要求绝对,也是可以使用其他设备驱动程序已用过的魔数。
基(序列号)数
      基数用于区别各种命令。通常,从 0开始递增,相同设备驱动程序上可以重复使用该值。例如,读取和写入命令中使用了相同的基数,设备驱动程序也能分辨出来,原因在于设备驱动程序区分命令时 使用 switch ,且直接使用命令变量 cmd值。创建命令的宏生成的值由多个域组合而成,所以即使是相同的基数,也会判断为不同的命令。设备驱动程序想要从命令中获取该基数,就使用下面的宏:
_IOC_NR (cmd)
通常,switch 中的 case 值使用的是命令的本身。
变量型
      变量型使用 arg 变量指定传送的数据大小,但是不直接代入输入,而是代入变量或者是变量的类型,原因是在使用宏创建命令,已经包含了 sizeof() 编译命令。比如 _IOR() 宏的定义是:

      引用

      #define _IOR(type,nr,size)    _IOC(_IOC_READ,(type),(nr),(_IOC_TYPECHECK(size)))

而 _IOC_TYPECHECK() 的定义正是:

      引用

      #define _IOC_TYPECHECK(t) (sizeof(t))

设备驱动程序想要从传送的命令获取相应的值,就要使用下列宏函数:
      _IOC_SIZE(cmd)

_IO 宏

      该宏函数没有可传送的变量,只是用于传送命令。例如如下约定:

      引用

      #define TEST_DRV_RESET _IO ('Q', 0)

此时,省略由应用程序传送的 arg 变量或者代入 0 。在应用程序中使用该宏时,比如:

      ioctl (dev, TEST_DEV_RESET, 0)   或者  ioctl (dev, TEST_DRV_RESET) 。
这是因为变量的有效因素是可变因素。只作为命令使用时,没有必要判 断出设备上数据的输出或输入。因此,设备驱动程序没有必要执行设备文件大开选项的相关处理。

_IOR 宏
     该函数用 于创建从设备读取数据的命令,例如可如下约定:

     引用

     #define TEST_DEV_READ  _IRQ('Q', 1, int)

这说明应用程序从设备读取数据的大小为 int 。下面宏用于判断传送到设备驱动程序的 cmd 命令的读写状态:
     _IOC_DIR (cmd)
运行该宏时,返回值的类型 如下:

  • _IOC_NONE                             :  无属性
  • _IOC_READ                             :  可读属性
  • _IOC_WRITE                           : 可写属性
  • _IOC_READ | _IOC_WRITE : 可读,可写属性

使用该命令时,应用程序的 ioctl() 的 arg 变量值指定设备驱动程序上读取数据时的缓存(结构体)地址。
_IOW 
      用于创建设 备上写入数据的命令,其余内容与 _IOR 相同。通常,使用该命令时,ioctl() 的 arg 变量值指定设备驱动程序上写入数据时的缓存(结构体)地址。
_IOWR 
      用于创建设备上读写数据的命令。其余内 容与 _IOR 相同。通常,使用该命令时,ioctl() 的 arg 变量值指定设备驱动程序上写入或读取数据时的缓存 (结构体) 地址。
_IOR() , _IOW(), IORW() 的定义
      #define _IOR(type,nr,size)    _IOC(_IOC_READ,(type),(nr),(_IOC_TYPECHECK(size)))
      #define _IOW(type,nr,size)    _IOC(_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))
      #define _IOWR(type,nr,size)    _IOC(_IOC_READ|_IOC_WRITE,(type),(nr),(_IOC_TYPECHECK(size)))

【作者】 张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
目录
相关文章
|
17天前
|
Linux 编译器 开发者
Linux设备树解析:桥接硬件与操作系统的关键架构
在探索Linux的庞大和复杂世界时🌌,我们经常会遇到许多关键概念和工具🛠️,它们使得Linux成为了一个强大和灵活的操作系统💪。其中,"设备树"(Device Tree)是一个不可或缺的部分🌲,尤其是在嵌入式系统🖥️和多平台硬件支持方面🔌。让我们深入了解Linux设备树是什么,它的起源,以及为什么Linux需要它🌳。
Linux设备树解析:桥接硬件与操作系统的关键架构
|
29天前
|
算法 Linux C++
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
29 0
|
29天前
|
算法 Linux C++
【Linux系统编程】深入解析Linux中read函数的错误场景
【Linux系统编程】深入解析Linux中read函数的错误场景
204 0
|
1月前
|
缓存 网络协议 Linux
【Shell 命令集合 网络通讯 】Linux 配置DNS dnsconf 命令 使用教程
【Shell 命令集合 网络通讯 】Linux 配置DNS dnsconf 命令 使用教程
38 0
|
1月前
|
Shell Linux 开发工具
【Shell 命令集合 文件管理】Linux 高级的文件管理器 mc 命令解析
【Shell 命令集合 文件管理】Linux 高级的文件管理器 mc 命令解析
39 0
|
30天前
|
算法 Unix Linux
Linux与Qt线程优先级的对应关系:一次全面解析
Linux与Qt线程优先级的对应关系:一次全面解析
22 0
|
13天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【4月更文挑战第12天】 在多任务操作系统如Linux中,进程调度机制是系统的核心组成部分之一,它决定了处理器资源如何分配给多个竞争的进程。本文深入探讨了Linux内核中的进程调度策略和相关算法,包括其设计哲学、实现原理及对系统性能的影响。通过分析进程调度器的工作原理,我们能够理解操作系统如何平衡效率、公平性和响应性,进而优化系统表现和用户体验。
20 3
|
20天前
|
负载均衡 算法 Linux
深度解析:Linux内核调度器的演变与优化策略
【4月更文挑战第5天】 在本文中,我们将深入探讨Linux操作系统的核心组成部分——内核调度器。文章将首先回顾Linux内核调度器的发展历程,从早期的简单轮转调度(Round Robin)到现代的完全公平调度器(Completely Fair Scheduler, CFS)。接着,分析当前CFS面临的挑战以及社区提出的各种优化方案,最后提出未来可能的发展趋势和研究方向。通过本文,读者将对Linux调度器的原理、实现及其优化有一个全面的认识。
|
21天前
|
存储 缓存 监控
深入解析linux内存指标:快速定位系统内存问题的有效技巧与实用方法(free、top、ps、vmstat、cachestat、cachetop、sar、swap、动态内存、cgroops、oom)
深入解析linux内存指标:快速定位系统内存问题的有效技巧与实用方法(free、top、ps、vmstat、cachestat、cachetop、sar、swap、动态内存、cgroops、oom)
|
26天前
|
网络协议 Linux
Linux自建DNS
Linux自建DNS
11 0