linux dpm机制分析(下)【转】

简介: 转自:http://blog.csdn.net/lixiaojie1012/article/details/23707901 1      设备注册到dpm_list路径 (Platform_device->device->device_driver指向platform_driver->driver)   2      低功耗接口 dpm_suspend_start():调用注册到dpm_list的设备的回调函数,执行睡眠前的准备和保存工作; dpm_suspend_end():执行suspend_late和suspend_noirq设备的回调函数,进行睡眠前的准备工作。

转自:http://blog.csdn.net/lixiaojie1012/article/details/23707901

1      设备注册到dpm_list路径

(Platform_device->device->device_driver指向platform_driver->driver)

 

2      低功耗接口

dpm_suspend_start():调用注册到dpm_list的设备的回调函数,执行睡眠前的准备和保存工作;

dpm_suspend_end():执行suspend_late和suspend_noirq设备的回调函数,进行睡眠前的准备工作。

睡眠时,设备在链表中的转移:

dpm_list--->dpm_prepared_list-->dpm_suspended_list---->

dpm_late_early_list--->dpm_noirq_list

 

Dpm_resume_start():执行设备的resume_noirq和resume_early回调,恢复suspend_noirq和suspend_late阶段保存的东西

dpm_resume_end():执行各设备的resume和complete回调接口,做suspend和prepare的逆操作

唤醒时,设备从链表中的转移顺序是上述suspend阶段顺序的逆序。

3      低功耗接口是如何调用到各设备驱动注册的回调函数的

系统进入睡眠前回调设备的回调函数是有选择的:

如果dev->pm_domain域的回调函数注册的话,首选此处的回调函数

否则,如果dev->type域和dev->type->pm域都注册的话,会选择dev->type->pm处的回调函数

否则,如果dev->class 和 dev->class->pm两处都注册回调函数的话,会选择dev->class->pm的回调函数

如果dev->bus 和 dev->bus->pm两处都注册回调函数的话,会选择dev->bus->pm的回调函数

示例方法1和方法4:

3.1       在dev域的电源域进行注册

struct platform_device {

       const char       * name;

       int          id;

       bool        id_auto;

       struct device   dev;

       u32         num_resources;

       struct resource * resource;

       const struct platform_device_id     *id_entry;

       /* MFD cell pointer */

       struct mfd_cell *mfd_cell;

       /* arch specific additions */

       struct pdev_archdata      archdata;

};

struct device {

       struct device          *parent;

       struct device_private      *p;

       struct kobject kobj;

       const char              *init_name; /* initial name of the device */

       const struct device_type *type;

       struct mutex           mutex;    /* mutex to synchronize calls to

                                    * its driver.*/

       struct bus_type       *bus;              /* type of bus device is on */

       struct device_driver *driver;  /* which driver has allocated this device */

       void        *platform_data;      /* Platform specific data, device core doesn't touch it */

       struct dev_pm_info power;

       struct dev_pm_domain *pm_domain;

…….}

struct dev_pm_domain {

       struct dev_pm_ops  ops;

};

struct dev_pm_ops {

       int (*prepare)(struct device *dev);

       void (*complete)(struct device *dev);

       int (*suspend)(struct device *dev);

       int (*resume)(struct device *dev);

       int (*freeze)(struct device *dev);

       int (*thaw)(struct device *dev);

       int (*poweroff)(struct device *dev);

       int (*restore)(struct device *dev);

       int (*suspend_late)(struct device *dev);

       int (*resume_early)(struct device *dev);

       int (*freeze_late)(struct device *dev);

       int (*thaw_early)(struct device *dev);

       int (*poweroff_late)(struct device *dev);

       int (*restore_early)(struct device *dev);

       int (*suspend_noirq)(struct device *dev);

       int (*resume_noirq)(struct device *dev);

       int (*freeze_noirq)(struct device *dev);

       int (*thaw_noirq)(struct device *dev);

       int (*poweroff_noirq)(struct device *dev);

       int (*restore_noirq)(struct device *dev);

       int (*runtime_suspend)(struct device *dev);

       int (*runtime_resume)(struct device *dev);

       int (*runtime_idle)(struct device *dev);

};

低功耗接口在函数__device_suspend函数内会首先调用在struct device电源域注册的回调函数。

 

唤醒时调用顺序:

 

3.2       在bus的ops电源域进行注册

注册设备和注册驱动进行匹配成功后

Platform_device->device->device_driver指针会指向platform_driver->driver成员

设备注册:

 (1)int platform_device_add(struct platform_device *pdev)

{

       ……………

       if (!pdev->dev.parent)

              pdev->dev.parent = &platform_bus;

       pdev->dev.bus = &platform_bus_type;

…………..

}

(2)struct bus_type platform_bus_type = {

       .name             = "platform",

       .dev_attrs       = platform_dev_attrs,

       .match            = platform_match,

       .uevent           = platform_uevent,

       .pm         = &platform_dev_pm_ops,

};

(3)static const struct dev_pm_ops platform_dev_pm_ops = {

       .runtime_suspend = pm_generic_runtime_suspend,

       .runtime_resume = pm_generic_runtime_resume,

       .runtime_idle = pm_generic_runtime_idle,

       USE_PLATFORM_PM_SLEEP_OPS

};

(4)#define USE_PLATFORM_PM_SLEEP_OPS \

       .suspend = platform_pm_suspend, \

       .resume = platform_pm_resume, \

       .freeze = platform_pm_freeze, \

       .thaw = platform_pm_thaw, \

       .poweroff = platform_pm_poweroff, \

       .restore = platform_pm_restore,

(5) int platform_pm_suspend(struct device *dev)

{

       struct device_driver *drv = dev->driver;

       int ret = 0;

       if (!drv)

              return 0;

       if (drv->pm) {

              if (drv->pm->suspend)

                     ret = drv->pm->suspend(dev);

       } else {

              ret = platform_legacy_suspend(dev, PMSG_SUSPEND);

       }

       return ret;

}

【作者】 张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
目录
相关文章
|
3月前
|
Java Unix Linux
Linux 系统-网络I/O模型
网络 I/O操作过程中会涉及到两个系统对象,一个是用户空间I/O操作的进程或者线程,另一个是内核 空间的内核系统,比如发生 I/O read操作时,它会经历两个阶段
29 0
|
9月前
|
缓存 网络协议 Java
Linux性能检测常用的10个基本命令
Linux性能检测常用的10个基本命令
387 0
|
缓存 监控 Ubuntu
Linux Command BCC 性能监视、网络动态跟踪工具
Linux Command BCC 性能监视、网络动态跟踪工具
|
运维 分布式计算 网络协议
Linux故障排除思路以及影响Linux性能的各种原因
系统故障排除思路 重视报错信息 永远不要忘记日志文件 分析、定位、解决问题 影响Linux性能的各种因素服务器硬件因素 操作系统相关因素 程序因素 Linux性能优化工具 cpu性能优化工具vmstat.iostat sar 内存性能检测工具:free、top、sar、pidstat 磁盘性能评估工具 :iostat、sar 网络性能分析工具: ping、mtr、netstat 系统性能分析标准 几个故障处理案例和性能优化案例 su命令切换用户导致的问题