十大数据挖掘算法及各自优势

简介:

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2) 在树构造过程中进行剪枝;

3) 能够完成对连续属性的离散化处理;

4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

目录
相关文章
|
13天前
|
存储 缓存 算法
C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力
本文探讨了C语言在实现高效算法方面的特点与优势,包括高效性、灵活性、可移植性和底层访问能力。文章还分析了数据结构的选择与优化、算法设计的优化策略、内存管理和代码优化技巧,并通过实际案例展示了C语言在排序和图遍历算法中的高效实现。
34 2
|
7月前
|
算法 Java
并发垃圾回收算法对于大规模服务器应用的优势
并发垃圾回收算法对于大规模服务器应用的优势
|
4月前
|
存储 SQL 算法
B端算法实践问题之Blink在实时业务场景下的优势如何解决
B端算法实践问题之Blink在实时业务场景下的优势如何解决
48 1
|
4月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
52 1
|
4月前
|
存储 缓存 算法
深入解析B树:数据结构、存储结构与算法优势
深入解析B树:数据结构、存储结构与算法优势
|
5月前
|
存储 算法 缓存
高并发架构设计三大利器:缓存、限流和降级问题之使用RateLimiter来限制操作的频率问题如何解决
高并发架构设计三大利器:缓存、限流和降级问题之使用RateLimiter来限制操作的频率问题如何解决
|
7月前
|
存储 前端开发 算法
加密算法在网络通信中的应用及优势分析
本文将探讨加密算法在网络通信中的重要性,以及不同加密算法的应用和优势。通过对前端、后端、Java、Python、C、PHP、Go等多种技术的分析,我们将了解在日益增长的网络威胁下,加密算法对于确保数据安全和隐私保护的必要性。
|
机器学习/深度学习 监控 算法
蝶形算法优势解析:提升办公室电脑监控软件性能
蝶形算法,又称为快速傅里叶变换(FFT),是一种数学工具,专用于计算序列的离散傅里叶变换。这一算法在信号处理、图像处理以及控制系统中拥有广泛的应用。
214 2
|
存储 监控 算法
解密上网行为管理:数据流分析算法的引入与优势
今天,我们将一起来谈谈数据流分析算法,这项看似高深莫测的技术是如何在上网行为管理中大放异彩的。首先,让我们来了解一下,什么是数据流分析算法?简而言之,这是一种用于处理大量数据的方法,它允许我们在数据流经过时实时监控、分析和提取有用信息。这一技术的应用领域之一就是上网行为管理。
189 1
|
监控 算法
转:BF算法对于文档管理软件的运用优势
BF算法(布隆过滤器算法)在文档管理软件中的应用场景包括: 1. 窗口列表查询:文档管理软件可以通过BF算法来查询当前所有的窗口列表,并根据需要对窗口进行筛选、排序、过滤等操作。 2. 窗口状态监测:文档管理软件可以利用BF算法对每个窗口进行哈希计算,将哈希值存入布隆过滤器中,从而能够快速判断窗口是否处于激活状态或者是否发生了变化。 3. 窗口内容监控:文档管理软件可以使用BF算法对窗口的内容进行哈希计算,并将哈希值存入布隆过滤器中,从而能够快速判断窗口内容是否发生了变化。
94 0

热门文章

最新文章