从硬件出发,浅谈操作系统的段机制与页机制【转】

简介: 转自:https://www.jianshu.com/p/f4a909f3fd2e 我们写一个程序,经过编译之后会变成一堆的指令。操作系统在执行这个程序的时候,也正是执行这堆指令。 指令可以是 取数据的指令 或 取下一条被执行指令 的指令。

转自:https://www.jianshu.com/p/f4a909f3fd2e

我们写一个程序,经过编译之后会变成一堆的指令。操作系统在执行这个程序的时候,也正是执行这堆指令。

指令可以是 取数据的指令取下一条被执行指令 的指令。但无论是什么指令,都会进行内存的访问和寻址。就像是我们必须找到东西放在哪里,我们才能去使用它。

那操作系统怎样帮我们去寻址呢?答案是 内存寻址涉及到内存的 段机制 和 页机制

让我们从硬件的发展史的角度来看段机制。

1971年,Intel 发布了第一款的微处理器4004。它是一个4位的微处理器。

1972年,Intel 发布了第一款八位处理器8008。它是一个8位的微处理器,地址总线(address bus)是14位的,就是说可以访问到16K的内存空间。

1974年4月,Intel 发布了第二款八位处理器8080。它是8008是增强版,增加了几个累加器,使它可以访问16位(8+8)的内存地址,即64K 范围内的地址空间。而且它也是公认的“第一款真正可用的微处理器”。8080的架构对8086产生了很大的影响,并且为 x86系列奠定了基础。

至此,内存寻址访问仍是绝对地址。就是指令的地址即物理地址,中间没有任何的转换。

1976年开始设计,1978年中旬Intel 发布了8086。标志了x86王朝的开始。它是一款16位的微处理器,却被设计成可以访问1MB 的内存(即20位的地址空间)。问题就产生了,16位的 ALU怎么去取20位的地址呢?因此,的概念 在8086身上被引入了。

段的引入是解决“ 地址总线的宽度一般要大于寄存器的宽度 ”这个问题。

8086的分段寻址,是指一个物理地址由段地址(segment selector)与偏移量(offset)两部分组成,长度各是16比特。其中段地址左移4位(即乘以16)与偏移量相加即为物理地址。例如,06EFh:1234h,表示段地址为06EFh,偏移量为1234h,物理地址为06EF0h + 1234h = 08124h。在计算物理地址时如果发生上溢出,8086处理器舍弃进位。例如,FFFFh:0010h所对应的物理地址为00000h.

这种分段寻址,即 段地址+偏移量 的做法,在以80286开始之后会被称为 实模式

1982年,Intel 的80286面世了。它是第一款采用 保护模式 的 x86微处理器。地址总线增加到24位使它可以访问到16M 的内存空间。即使是可访的内存空间增加了,但它的分段大小依然是64K,程序的规模受限,注定286受不到更多的喜爱。

所以,286很快就被80386所替代了。

1985年,Intel 发布了80386。一个拥有32位的微处理器。并且地址总数(address bus)也是32位的,寻址能力大幅提高到4G。同时,为了向前兼容8086,386中既有保护模式,又有实模式。并且在保护模式下,分段的大小可以到达4G(2**32)。

现在有必要简单交代一下,实模式 与 保护模式 分别是什么了。

实模式: 是 段地址+偏移量 的方式,得到物理地址,进而寻址。

保护模式: 不允许通过段寄存器取值得到段的起始地址,而是把虚拟地址转进一个 MMU 的硬件,经过额外的转换和检查,进而得到一个物理地址。(如下图)。其中的额外检查就可以起到例如保护某段数据的作用。

图1:MMU 转换虚拟地址为物理地址

是时候来一个简单的总结了。

从4004到386,先是直接物理地址寻址,然后是 实模式 形式的寻址,最后变为 保护模式 形式寻址。

最重要的变化是从“实模式”向“保护模式”的转变。这背后实际也是处理器的系统体系结构的变化。虽然386往后的CPU在各方面都有改进,但由于在本质上的结构没有大变化,所以386往后的处理器都统称80x86

 

我们还需要解决小内存运行大作业的问题——页机制的引入

段机制抛开了实际物理内存的大小,从抽象层面提供给开发人员更大的线性空间进行程序开发。但物理内存如果不足时的情况仍需解决。

分页,这时就被提出了。分页很好地解决了小内存的问题。

它通过将 物理内存空间 和 线性地址空间 分成若干相等的页。(一般都为4KB)。这样整个程序就不需要连续存放在物理内存中,更可以按需把页面调进内存,而不需要把整个线性地址空间加载到内存中。正如你将会看到的,这种机制十分巧妙又实用。

要实现分页,需要讨论的问题比分段要多,这里不过多累赘,有兴趣可以移步到《操作系统学习笔记-储存管理》这篇文章阅读。

最后

本文只是一种浅述,没有对段机制和页机制进行深入。只是从历史的角度出发,整理后扼要地介绍这两个机制。

如果顺着这个方向进一步找书和资料会发现 Intel 的设计是越来越细致和周全的。而实际在各种不同处理器上开发操作系统又是有各种的考虑和取舍的。

例如 Linux,它就没有用 Intel 的段机制,而是将其绕过。毕竟不是每个品牌的处理器都支持段的。



作者:wacvk
链接:https://www.jianshu.com/p/f4a909f3fd2e
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
【作者】 张昺华
【新浪微博】 张昺华--sky
【twitter】 @sky2030_
【facebook】 张昺华 zhangbinghua
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
目录
相关文章
|
17天前
|
Linux 编译器 开发者
Linux设备树解析:桥接硬件与操作系统的关键架构
在探索Linux的庞大和复杂世界时🌌,我们经常会遇到许多关键概念和工具🛠️,它们使得Linux成为了一个强大和灵活的操作系统💪。其中,"设备树"(Device Tree)是一个不可或缺的部分🌲,尤其是在嵌入式系统🖥️和多平台硬件支持方面🔌。让我们深入了解Linux设备树是什么,它的起源,以及为什么Linux需要它🌳。
Linux设备树解析:桥接硬件与操作系统的关键架构
|
1月前
|
监控 安全 算法
深入理解操作系统的内存管理机制
【2月更文挑战第30天】 本文旨在探讨操作系统中至关重要的一环——内存管理。与传统摘要不同,本文将直接点出核心议题:操作系统是如何通过复杂的数据结构和算法实现对计算机内存的有效管理和优化。文章将详细阐述内存管理的关键组成部分,包括内存分配、虚拟内存技术、分页和段机制等,并探讨它们如何共同协作以支持多任务处理和保护系统安全。通过对这些机制的深入了解,读者可以更好地把握操作系统设计之精髓及对现代计算环境的深远影响。
|
1天前
|
存储 算法
深入理解操作系统的内存管理机制
【4月更文挑战第24天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职责之一。本文将探讨操作系统如何通过内存管理提升系统性能和稳定性,包括物理内存与虚拟内存的概念、分页机制、内存分配策略以及内存交换技术。我们将透过理论与实践的结合,分析内存管理的关键技术及其对系统运行效率的影响。
|
8天前
|
存储 算法 数据安全/隐私保护
深入理解操作系统的内存管理机制
【4月更文挑战第17天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职能之一。本文探讨了操作系统内存管理的关键技术,包括虚拟内存、物理内存分配与回收、分页和分段机制,以及内存交换技术。通过分析这些机制的原理和实现,我们旨在加深读者对操作系统如何有效管理和保护内存资源的理解。
9 1
|
10天前
|
算法
深入理解操作系统的内存管理机制
【4月更文挑战第15天】 本文将探讨操作系统中至关重要的一环——内存管理。不同于通常对内存管理概念的浅尝辄止,我们将深入研究其核心原理与实现策略,并剖析其对系统性能和稳定性的影响。文章将详细阐述分页系统、分段技术以及它们在现代操作系统中的应用,同时比较它们的效率与复杂性。通过本文,读者将获得对操作系统内存管理深层次工作机制的洞见,以及对设计高效、稳定内存管理系统的理解。
|
20天前
|
缓存 监控 算法
深入理解操作系统的内存管理机制
【4月更文挑战第5天】 随着现代计算机系统的发展,操作系统的内存管理已成为确保系统高效稳定运行的关键因素。本文旨在探讨操作系统中内存管理的基本原理、关键技术及其在实际应用中的优化策略。通过分析内存分配、虚拟内存技术以及内存保护和分页机制等方面,揭示内存管理对提升系统性能的重要性,并提供了一系列优化内存使用效率的方法。
|
22天前
|
存储 算法 开发者
深入理解操作系统的内存管理机制
【4月更文挑战第3天】 本文旨在探讨操作系统中至关重要的一环——内存管理。不同于常规的技术分析文章,我们将从宏观和微观两个维度来剖析内存管理的核心原理及其对系统性能的影响。通过深入研究分页、分段以及虚拟内存等关键技术,我们揭示了操作系统如何优化资源分配,实现多任务并发执行的同时保证系统的稳定与高效。本文不仅适用于计算机科学专业的学者和学生,同时也为软件开发者提供了宝贵的参考,帮助他们设计出更高效的程序。
|
1月前
|
算法 UED
深入理解操作系统的内存管理机制
【2月更文挑战第29天】 在现代计算机系统中,操作系统扮演着至关重要的角色,尤其在内存资源的分配与管理上。本文将详细探讨操作系统内存管理的关键技术和策略,包括分页、分段、虚拟内存以及物理内存的管理。通过剖析这些机制的原理与实现,旨在为读者提供一个清晰的框架,以理解操作系统如何高效地处理内存资源,确保系统的稳定运行及良好的用户体验。
|
1月前
|
存储 缓存 NoSQL
|
1月前
|
存储 Ubuntu 网络安全