几道大数据面试题

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

首先处理大数据的面试题,有些基本概念要清楚:

(1)1Gb = 109bytes(1Gb = 10亿字节):1Gb = 1024Mb,1Mb = 1024Kb,1Kb = 1024bytes;

(2)基本流程是,分解大问题,解决小问题,从局部最优中选择全局最优;(当然,如果直接放内存里就能解决的话,那就直接想办法求解,不需要分解了。)

(3)分解过程常用方法:hash(x)%m。其中x为字符串/url/ip,m为小问题的数目,比如把一个大文件分解为1000份,m=1000;

(4)解决问题辅助数据结构:hash_map,Trie树,bit map,二叉排序树(AVL,SBT,红黑树);

(5)top K问题:最大K个用最小堆,最小K个用最大堆。(至于为什么?自己在纸上写个小栗子,试一下就知道了。)

(6)处理大数据常用排序:快速排序/堆排序/归并排序/桶排序

 

下面是几个例题(每个题的解法都不唯一,下面只列出了众多解法中的一种):

1. 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url?

假如每个url大小为10bytes,那么可以估计每个文件的大小为50G×64=320G,远远大于内存限制的4G,所以不可能将其完全加载到内存中处理,可以采用分治的思想来解决。

Step1:遍历文件a,对每个url求取hash(url)%1000,然后根据所取得的值将url分别存储到1000个小文件(记为a0,a1,...,a999 ,每个小文件约300M);

Step2: 遍历文件b,采取和a相同的方式将url分别存储到1000个小文件(记为b0,b1,...,b999);

巧妙之处:这样处理后,所有可能相同的url都被保存在对应的小文件(a0 vs b0, a1 vs b1 ,...,a999 vs b999)中,不对应的小文件不可能有相同的url。然后我们只要求出这个1000对小文件中相同的url即可。

Step3:求每对小文件ai和bi中相同的url时,可以把ai的url存储到hash_set/hash_map中。然后遍历bi的每个url,看其是否在刚才构建的hash_set中,如果是,那么就是共同的url,存到文件里面就可以了。

草图如下(左边分解A,右边分解B,中间求解相同url):

 

2. 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M,要求返回频数最高的100个词。

Step1:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为f,f,... ,f4999)中,这样每个文件大概是200k左右,如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M;

Step2:对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件,这样又得到了5000个文件;

Step3:把这5000个文件进行归并(类似与归并排序);

草图如下(分割大问题,求解小问题,归并):

 

3. 现有海量日志数据保存在一个超级大的文件中,该文件无法直接读入内存,要求从中提取某天出访问百度次数最多的那个IP。

Step1:从这一天的日志数据中把访问百度的IP取出来,逐个写入到一个大文件中;

Step2:注意到IP是32位的,最多有2^32个IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件;

Step3:找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率;

Step4:在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

草图如下:


本文转自ZH奶酪博客园博客,原文链接:http://www.cnblogs.com/CheeseZH/p/5283390.html,如需转载请自行联系原作者

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6月前
|
SQL 前端开发 程序员
【面试题】前端开发中如何高效渲染大数据量?
【面试题】前端开发中如何高效渲染大数据量?
119 0
|
6月前
|
设计模式 SQL 算法
大数据面试总结
大数据面试总结
67 0
|
6月前
|
存储 安全 Java
Java大数据面试复习30天冲刺 - 日积月累,每日五题【Day03】——JavaSE
Java大数据面试复习30天冲刺 - 日积月累,每日五题【Day03】——JavaSE
66 0
|
5月前
|
SQL 大数据
常见大数据面试SQL-每年总成绩都有所提升的学生
一张学生成绩表(student_scores),有year-学年,subject-课程,student-学生,score-分数这四个字段,请完成如下问题: 问题1:每年每门学科排名第一的学生 问题2:每年总成绩都有所提升的学生
|
6月前
|
分布式计算 监控 大数据
《吊打面试官》- 大数据工程师50道中大厂面试真题保姆级详解
《吊打面试官》- 大数据工程师50道中大厂面试真题保姆级详解
108 1
《吊打面试官》- 大数据工程师50道中大厂面试真题保姆级详解
|
6月前
|
SQL 分布式计算 算法
程序员必备的面试技巧——大数据工程师面试必备技能
程序员必备的面试技巧——大数据工程师面试必备技能
114 0
|
6月前
|
缓存 运维 NoSQL
面试分享:Redis在大数据环境下的缓存策略与实践
【4月更文挑战第10天】探索Redis在大数据缓存的关键作用,本文分享面试经验及必备知识点。聚焦Redis数据结构(String、List、Set、Hash、Sorted Set)及其适用场景,缓存策略(LRU、LFU、TTL)与过期机制,集群和数据分片,以及性能优化和运维技巧。通过代码示例深入理解,助你面试成功,构建高效缓存服务。
170 4
|
6月前
|
消息中间件 分布式计算 Kafka
50道大数据精选面试题
50道大数据精选面试题
|
6月前
|
Java 大数据
Java大数据面试复习30天冲刺 - 日积月累,每日五题【Day04】——JavaSE
Java大数据面试复习30天冲刺 - 日积月累,每日五题【Day04】——JavaSE
59 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
下一篇
无影云桌面