机器学习算法的随机数据生成

简介:

  在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。

1. numpy随机数据生成API

    numpy比较适合用来生产一些简单的抽样数据。API都在random类中,常见的API有:

    1) rand(d0, d1, ..., dn) 用来生成d0xd1x...dn维的数组。数组的值在[0,1]之间

    例如:np.random.rand(3,2,2),输出如下3x2x2的数组

array([[[ 0.49042678,  0.60643763],
        [ 0.18370487,  0.10836908]],

       [[ 0.38269728,  0.66130293],
        [ 0.5775944 ,  0.52354981]],

       [[ 0.71705929,  0.89453574],
        [ 0.36245334,  0.37545211]]])  

    2) randn((d0, d1, ..., dn), 也是用来生成d0xd1x...dn维的数组。不过数组的值服从N(0,1)的标准正态分布。

    例如:np.random.randn(3,2),输出如下3x2的数组,这些值是N(0,1)的抽样数据。

array([[-0.5889483 , -0.34054626],
       [-2.03094528, -0.21205145],
       [-0.20804811, -0.97289898]])

如果需要服从N(μ,σ2)N(μ,σ2)的正态分布,只需要在randn上每个生成的值x上做变换σx+μσx+μ即可,例如:

例如:2*np.random.randn(3,2) + 1,输出如下3x2的数组,这些值是N(1,4)的抽样数据。

array([[ 2.32910328, -0.677016  ],
       [-0.09049511,  1.04687598],
       [ 2.13493001,  3.30025852]])

3)randint(low[, high, size]),生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间 [low, high)。

    例如:np.random.randint(3, size=[2,3,4])返回维数维2x3x4的数据。取值范围为最大值为3的整数。

      array([[[2, 1, 2, 1],
[0, 1, 2, 1],
[2, 1, 0, 2]],

[[0, 1, 0, 0],
[1, 1, 2, 1],
[1, 0, 1, 2]]])

    再比如: np.random.randint(3, 6, size=[2,3]) 返回维数为2x3的数据。取值范围为[3,6).

      array([[4, 5, 3],
[3, 4, 5]])

    4) random_integers(low[, high, size]),和上面的randint类似,区别在与取值范围是闭区间[low, high]。

    5) random_sample([size]), 返回随机的浮点数,在半开区间 [0.0, 1.0)。如果是其他区间[a,b),可以加以转换(b - a) * random_sample([size]) + a

    例如: (5-2)*np.random.random_sample(3)+2 返回[2,5)之间的3个随机数。

      array([ 2.87037573,  4.33790491,  2.1662832 ])

 

2. scikit-learn随机数据生成API介绍

    scikit-learn生成随机数据的API都在datasets类之中,和numpy比起来,可以用来生成适合特定机器学习模型的数据。常用的API有:

    1) 用make_regression 生成回归模型的数据

    2) 用make_hastie_10_2,make_classification或者make_multilabel_classification生成分类模型数据

    3) 用make_blobs生成聚类模型数据

    4) 用make_gaussian_quantiles生成分组多维正态分布的数据

3. scikit-learn随机数据生成实例

3.1 回归模型随机数据

     这里我们使用make_regression生成回归模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),noise(样本随机噪音)和coef(是否返回回归系数)。例子代码如下:

复制代码
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_regression
# X为样本特征,y为样本输出, coef为回归系数,共1000个样本,每个样本1个特征
X, y, coef =make_regression(n_samples=1000, n_features=1,noise=10, coef=True)
# 画图
plt.scatter(X, y,  color='black')
plt.plot(X, X*coef, color='blue',
         linewidth=3)

plt.xticks(())
plt.yticks(())

plt.show()
复制代码

输出的图如下:

3.2 分类模型随机数据

    这里我们用make_classification生成三元分类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数), n_redundant(冗余特征数)和n_classes(输出的类别数),例子代码如下:

复制代码
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_classification
# X1为样本特征,Y1为样本类别输出, 共400个样本,每个样本2个特征,输出有3个类别,没有冗余特征,每个类别一个簇
X1, Y1 = make_classification(n_samples=400, n_features=2, n_redundant=0,
                             n_clusters_per_class=1, n_classes=3)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)
plt.show()
复制代码

输出的图如下:

3.3 聚类模型随机数据

    这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心)和cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:

复制代码
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共3个簇,簇中心在[-1,-1], [1,1], [2,2], 簇方差分别为[0.4, 0.5, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1,-1], [1,1], [2,2]], cluster_std=[0.4, 0.5, 0.2])
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y)
plt.show()
复制代码

输出的图如下:

3.4 分组正态分布混合数据

    我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值), cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。 例子如下:

复制代码
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import make_gaussian_quantiles
#生成2维正态分布,生成的数据按分位数分成3组,1000个样本,2个样本特征均值为1和2,协方差系数为2
X1, Y1 = make_gaussian_quantiles(n_samples=1000, n_features=2, n_classes=3, mean=[1,2],cov=2)
plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1)
复制代码

输出图如下

    以上就是生产随机数据的一个总结,希望可以帮到学习机器学习算法的朋友们。 


本文转自刘建平Pinard博客园博客,原文链接:http://www.cnblogs.com/pinard/p/6047802.html,如需转载请自行联系原作者


相关文章
|
1月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
|
16天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
8天前
|
机器学习/深度学习 自然语言处理 算法
|
24天前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
|
29天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
【机器学习】包裹式特征选择之拉斯维加斯包装器(LVW)算法
50 0
|
1月前
|
机器学习/深度学习 存储 算法
【机器学习】包裹式特征选择之基于遗传算法的特征选择
【机器学习】包裹式特征选择之基于遗传算法的特征选择
48 0
|
1月前
|
机器学习/深度学习 算法 生物认证
基于深度学习的人员指纹身份识别算法matlab仿真
基于深度学习的人员指纹身份识别算法matlab仿真
|
26天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真

热门文章

最新文章