深度神经网络(DNN)模型与前向传播算法

简介:

 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。

1. 从感知机到神经网络

    在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图:

    输出和输入之间学习到一个线性关系,得到中间输出结果:

z=i=1mwixi+bz=∑i=1mwixi+b

    接着是一个神经元激活函数:

sign(z)={11z<0z0sign(z)={−1z<01z≥0

    从而得到我们想要的输出结果1或者-1。

    这个模型只能用于二元分类,且无法学习比较复杂的非线性模型,因此在工业界无法使用。

    而神经网络则在感知机的模型上做了扩展,总结下主要有三点:

    1)加入了隐藏层,隐藏层可以有多层,增强模型的表达能力,如下图实例,当然增加了这么多隐藏层模型的复杂度也增加了好多。

    2)输出层的神经元也可以不止一个输出,可以有多个输出,这样模型可以灵活的应用于分类回归,以及其他的机器学习领域比如降维和聚类等。多个神经元输出的输出层对应的一个实例如下图,输出层现在有4个神经元了。

    3) 对激活函数做扩展,感知机的激活函数是sign(z)sign(z),虽然简单但是处理能力有限,因此神经网络中一般使用的其他的激活函数,比如我们在逻辑回归里面使用过的Sigmoid函数,即:

f(z)=11+ezf(z)=11+e−z

    还有后来出现的tanx, softmax,和ReLU等。通过使用不同的激活函数,神经网络的表达能力进一步增强。对于各种常用的激活函数,我们在后面再专门讲。

2. DNN的基本结构

    上一节我们了解了神经网络基于感知机的扩展,而DNN可以理解为有很多隐藏层的神经网络。这个很多其实也没有什么度量标准, 多层神经网络和深度神经网络DNN其实也是指的一个东西,当然,DNN有时也叫做多层感知机(Multi-Layer perceptron,MLP), 名字实在是多。后面我们讲到的神经网络都默认为DNN。

    从DNN按不同层的位置划分,DNN内部的神经网络层可以分为三类,输入层,隐藏层和输出层,如下图示例,一般来说第一层是输入层,最后一层是输出层,而中间的层数都是隐藏层。

    层与层之间是全连接的,也就是说,第i层的任意一个神经元一定与第i+1层的任意一个神经元相连。虽然DNN看起来很复杂,但是从小的局部模型来说,还是和感知机一样,即一个线性关系z=wixi+bz=∑wixi+b加上一个激活函数σ(z)σ(z)

    由于DNN层数多,则我们的线性关系系数ww和偏倚bb的数量也就是很多了。具体的参数在DNN是如何定义的呢?

    首先我们来看看线性关系系数ww的定义。以下图一个三层的DNN为例,第二层的第4个神经元到第三层的第2个神经元的线性系数定义为w324w243。上标3代表线性系数ww所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4。你也许会问,为什么不是w342w423, 而是w324w243呢?这主要是为了便于模型用于矩阵表示运算,如果是w342w423而每次进行矩阵运算是wTx+bwTx+b,需要进行转置。将输出的索引放在前面的话,则线性运算不用转置,即直接为wx+bwx+b。总结下,第l1l−1层的第k个神经元到第ll层的第j个神经元的线性系数定义为wljkwjkl。注意,输入层是没有ww参数的。

     再来看看偏倚bb的定义。还是以这个三层的DNN为例,第二层的第三个神经元对应的偏倚定义为b23b32。其中,上标2代表所在的层数,下标3代表偏倚所在的神经元的索引。同样的道理,第三个的第一个神经元的偏倚应该表示为b31b13。同样的,输入层是没有偏倚参数bb的。

3. DNN前向传播算法数学原理

    在上一节,我们已经介绍了DNN各层线性关系系数ww,偏倚bb的定义。假设我们选择的激活函数是σ(z)σ(z),隐藏层和输出层的输出值为aa,则对于下图的三层DNN,利用和感知机一样的思路,我们可以利用上一层的输出计算下一层的输出,也就是所谓的DNN前向传播算法。

    对于第二层的的输出a21,a22,a23a12,a22,a32,我们有:

a21=σ(z21)=σ(w211x1+w212x2+w213x3+b21)a12=σ(z12)=σ(w112x1+w122x2+w132x3+b12)
a22=σ(z22)=σ(w221x1+w222x2+w223x3+b22)a22=σ(z22)=σ(w212x1+w222x2+w232x3+b22)
a23=σ(z23)=σ(w231x1+w232x2+w233x3+b23)a32=σ(z32)=σ(w312x1+w322x2+w332x3+b32)

    对于第三层的的输出a31a13,我们有:

a31=σ(z31)=σ(w311a21+w312a22+w313a23+b31)a13=σ(z13)=σ(w113a12+w123a22+w133a32+b13)

    将上面的例子一般化,假设第l1l−1层共有m个神经元,则对于第ll层的第j个神经元的输出aljajl,我们有:

alj=σ(zlj)=σ(k=1mwljkal1k+blj)ajl=σ(zjl)=σ(∑k=1mwjklakl−1+bjl)

    其中,如果l=2l=2,则对于的a1kak1即为输入层的xkxk

    从上面可以看出,使用代数法一个个的表示输出比较复杂,而如果使用矩阵法则比较的简洁。假设第l1l−1层共有m个神经元,而第ll层共有n个神经元,则第ll层的线性系数ww组成了一个n×mn×m的矩阵WlWl, 第ll层的偏倚bb组成了一个n×1n×1的向量blbl , 第l1l−1层的的输出aa组成了一个m×1m×1的向量al1al−1,第ll层的的未激活前线性输出zz组成了一个n×1n×1的向量zlzl, 第ll层的的输出aa组成了一个n×1n×1的向量alal。则用矩阵法表示,第l层的输出为:

al=σ(zl)=σ(Wlal1+bl)al=σ(zl)=σ(Wlal−1+bl)
 

    这个表示方法简洁漂亮,后面我们的讨论都会基于上面的这个矩阵法表示来。

4. DNN前向传播算法

    有了上一节的数学推导,DNN的前向传播算法也就不难了。所谓的DNN的前向传播算法也就是利用我们的若干个权重系数矩阵WW,偏倚向量bb来和输入值向量xx进行一系列线性运算和激活运算,从输入层开始,一层层的向后计算,一直到运算到输出层,得到输出结果为值。

    输入: 总层数L,所有隐藏层和输出层对应的矩阵WW,偏倚向量bb,输入值向量xx

    输出:输出层的输出aLaL

    1) 初始化a1=xa1=x

    2)  for l=2l=2 to LL, 计算:

al=σ(zl)=σ(Wlal1+bl)al=σ(zl)=σ(Wlal−1+bl)

    最后的结果即为输出aLaL

5. DNN前向传播算法小结

    单独看DNN前向传播算法,似乎没有什么大用处,而且这一大堆的矩阵WW,偏倚向量bb对应的参数怎么获得呢?怎么得到最优的矩阵WW,偏倚向量bb呢?这个我们在讲DNN的反向传播算法时再讲。而理解反向传播算法的前提就是理解DNN的模型与前向传播算法。这也是我们这一篇先讲的原因。


本文转自刘建平Pinard博客园博客,原文链接:http://www.cnblogs.com/pinard/p/6418668.html,如需转载请自行联系原作者


相关文章
|
18天前
|
网络协议 数据安全/隐私保护 网络架构
计算机网络模型
【9月更文挑战第2天】
44 24
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度剖析深度神经网络(DNN):原理、实现与应用
本文详细介绍了深度神经网络(DNN)的基本原理、核心算法及其具体操作步骤。DNN作为一种重要的人工智能工具,通过多层次的特征学习和权重调节,实现了复杂任务的高效解决。文章通过理论讲解与代码演示相结合的方式,帮助读者理解DNN的工作机制及实际应用。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
14 1
|
16天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
19天前
|
分布式计算 负载均衡 监控
p2p网络架构模型
P2P(Peer-to-Peer)模式是一种网络架构模型,在这种模型中,每个节点(peer)既是服务的提供者也是服务的消费者。这意味着每个参与的节点都可以直接与其他节点通信,并且可以相互提供资源和服务,例如文件共享、流媒体传输等。
22 6
|
16天前
|
网络协议 安全 网络安全
C语言 网络编程(四)常见网络模型
这段内容介绍了目前被广泛接受的三种网络模型:OSI七层模型、TCP五层模型以及TCP/IP四层模型,并简述了多个网络协议的功能与特性,包括HTTP、HTTPS、FTP、DNS、SMTP、TCP、UDP、IP、ICMP、ARP、RARP及SSH协议等,同时提到了ssh的免费开源实现openssh及其在Linux系统中的应用。
|
20天前
|
网络协议 安全 网络性能优化
OSI 模型详解:网络通信的七层架构
【8月更文挑战第31天】
106 0
|
15天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
15天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
16天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。

热门文章

最新文章