自然语言处理工具LTP语言云调用方法

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介:

前言

LTP语言云平台

      不支持离线调用;

  支持分词、词性标注、命名实体识别、依存句法分析、语义角色标注

  不支持自定义词表,但是你可以先用其他支持自定义分词的工具(例如中科院的NLPIR)把文本进行分词,再让ltp帮你标注

     支持C#、Go、Java、JavaScript、Nodejs、PHP、Python、R、Ruby等语言调用;  

     还有一些错误响应频率限制重要说明(这几个我至今也没用到);

正文

官方网址:http://www.ltp-cloud.com/

使用文档:http://www.ltp-cloud.com/document/

在线演示:http://www.ltp-cloud.com/demo/

各种语言调用实例可以到Github上下载:https://github.com/HIT-SCIR/ltp-cloud-api-tutorial

例如Python版本的:https://github.com/HIT-SCIR/ltp-cloud-api-tutorial/tree/master/Python

Step1:注册

这个网址申请一个API key,稍后会用到;

Step2:一个简单的例子(Python版)

(1)复制代码:从Github上复制一段代码(取决于你使用的语言和所需的功能)

(2)修改代码:

  <1>把 api_key = "YourApiKey" 中的 "YourApiKey" 修改成你Step1申请的API Key;

  <2>把 text = "我爱北京天安门" 修改成你要处理的文本;

  <3>根据需求设置不同的参数(其实只需要api_key,text,pattern,format四个参数就够了,仔细看下pattern):

   

复制代码
# -*- coding: utf-8 -*-
#!/usr/bin/env python

# This example shows how to use Python to access the LTP API to perform full
# stack Chinese text analysis including word segmentation, POS tagging, dep-
# endency parsing, name entity recognization and semantic role labeling and
# get the result in specified format.

import urllib2, urllib
import sys

if __name__ == '__main__':
    if len(sys.argv) < 2 or sys.argv[1] not in ["xml", "json", "conll"]:
        print >> sys.stderr, "usage: %s [xml/json/conll]" % sys.argv[0]
        sys.exit(1)

    uri_base = "http://ltpapi.voicecloud.cn/analysis/?"
    api_key  = "YourApiKey"
    text     = "我爱北京天安门"
    # Note that if your text contain special characters such as linefeed or '&',
    # you need to use urlencode to encode your data
    text     = urllib.quote(text)
    format   = sys.argv[1]
    pattern  = "all"

    url      = (uri_base
               + "api_key=" + api_key + "&"
               + "text="    + text    + "&"
               + "format="  + format  + "&"
               + "pattern=" + "all")

    try:
        response = urllib2.urlopen(url)
        content  = response.read().strip()
        print content
    except urllib2.HTTPError, e:
        print >> sys.stderr, e.reason
复制代码

Step3:运行

如果要批量处理txt或者xml文件,需要自己写一段批量处理的代码,下边是我之前项目中用到的一段批量处理某一目录下txt文件代码(就是加了一层循环和设置了一个输出):

复制代码
 1 # -*- coding: utf-8 -*-
 2 #!/usr/bin/env python
 3 
 4 # This example shows how to use Python to access the LTP API to perform full
 5 # stack Chinese text analysis including word segmentation, POS tagging, dep-
 6 # endency parsing, name entity recognization and semantic role labeling and
 7 # get the result in specified format.
 8 
 9 import urllib2, urllib
10 import sys
11 
12 if __name__ == '__main__':
13     uri_base = "http://ltpapi.voicecloud.cn/analysis/?"
14     api_key  = "7132G4z1HE3S********DSxtNcmA1jScSE5XumAI"
15 
16     f = open("E:\\PyProj\\Others\\rite_sentence.txt")
17     fw = open("E:\\PyProj\\Others\\rite_pos.txt",'w')
18 
19     line = f.readline()
20     while(line):
21         text     = line
22         # Note that if your text contain special characters such as linefeed or '&',
23         # you need to use urlencode to encode your data
24         text     = urllib.quote(text)
25         format   = "plain"
26         pattern  = "pos"
27 
28         url      = (uri_base
29                    + "api_key=" + api_key + "&"
30                    + "text="    + text    + "&"
31                    + "format="  + format  + "&"
32                    + "pattern=" + pattern)
33 
34         try:
35             response = urllib2.urlopen(url)
36             content  = response.read().strip()
37             print content
38             fw.write(line+content+'\n')
39         except urllib2.HTTPError, e:
40             print >> sys.stderr, e.reason
41         line = f.readline()
42     fw.close()
43     f.close()
复制代码

 '

本文转自ZH奶酪博客园博客,原文链接:http://www.cnblogs.com/CheeseZH/p/4585176.html,如需转载请自行联系原作者

相关文章
|
4月前
|
人工智能 自然语言处理
自然语言处理:电脑如何理解我们的语言?
自然语言处理:电脑如何理解我们的语言?
|
15天前
|
机器学习/深度学习 数据采集 自然语言处理
打造个性化新闻推荐系统:机器学习与自然语言处理的结合Java中的异常处理:从基础到高级
【8月更文挑战第27天】在信息过载的时代,个性化新闻推荐系统成为解决信息筛选难题的关键工具。本文将深入探讨如何利用机器学习和自然语言处理技术构建一个高效的新闻推荐系统。我们将从理论基础出发,逐步介绍数据预处理、模型选择、特征工程,以及推荐算法的实现,最终通过实际代码示例来展示如何将这些理论应用于实践,以实现精准的个性化内容推荐。
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述
人工智能(AI)领域涉及众多框架和模型,这些框架和模型为开发人员提供了强大的工具,以构建和训练各种AI应用。以下是一些常用的人工智能框架、模型、使用方法、应用场景以及代码实例的概述。
21 1
|
2月前
|
存储 人工智能 算法
记录阿里云ai助手的上下文语境问题
【7月更文挑战第17天】本文介绍尝试用阿里云AI助手找两字符串的最长公共子串,提供的Go代码因缺失完整返回值而无法编译,未能解决问题。整个过程显示AI理解与响应不够准确连贯。
55 1
记录阿里云ai助手的上下文语境问题
|
1月前
|
机器学习/深度学习 自然语言处理
自然语言处理在机器翻译中是如何实现的?
自然语言处理在机器翻译中是如何实现的?
|
4月前
|
机器学习/深度学习 存储 人工智能
人工智能平台PAI产品使用合集之如何通过通用文本标记解决方案文档与PAI机器学习平台一起使用
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
4月前
|
测试技术 API 智能硬件
语言模型在提升智能助手引用解析能力中的创新应用
【4月更文挑战第4天】苹果研究团队推出了ReALM,一种利用大型语言模型解决引用解析的新方法,提升智能助手理解用户意图和上下文的能力。ReALM将引用解析转化为语言建模问题,尤其擅长处理屏幕上的实体,比现有系统提升超5%,性能接近GPT-4但参数更少。其模块化设计易于集成,可在不同场景下扩展。然而,复杂查询处理和依赖上游数据检测器可能影响其准确性和稳定性。
102 6
语言模型在提升智能助手引用解析能力中的创新应用
|
4月前
|
存储 人工智能 API
【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码)
【AI Agent系列】【MetaGPT多智能体学习】7. 剖析BabyAGI:原生多智能体案例一探究竟(附简化版可运行代码)
294 0
|
10月前
|
设计模式 自然语言处理 程序员
ChatGPT函数调用初体验:让ChatGPT具备抓取网页文本的能力
这篇文章总结了使用ChatGPT提升程序员编程能力的方法和场景。作者经过两个月的使用发现,虽然ChatGPT目前还无法完全替代程序员在一些强上下文的编程场景下的能力,但在一些通用化的编程场景下,它的表现仍然可行。作者提炼出以下利用ChatGPT的场景
158 0
|
存储 人工智能 自然语言处理