回文字符串(动态规划解法)

简介:
时间限制: 3000 ms | 内存限制: 65535 KB
难度: 4
 
描述
所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba"。当然,我们给你的问题不会再简单到判断一个字符串是不是回文字符串。现在要求你,给你一个字符串,可在任意位置添加字符,最少再添加几个字符,可以使这个字符串成为回文字符串。
 
输入
第一行给出整数N(0<N<100)
接下来的N行,每行一个字符串,每个字符串长度不超过1000.
输出
每行输出所需添加的最少字符数
样例输入
1
Ab3bd
样例输出
2

一道动态规划题,辅助空间cost[i][j]表示要将从s[j]个字符开始长度为i的子串变为对称串需要添加的字符个数;这样,动态方程为:

cost[0][i] = cost[1][i] = 0;//长度为0和长度为1的串

cost[i][j] = 当s[j] == s[i+j-1]时,字符串长度加2,需要增加的字符个数相同,即cost[i][j] = cost[i-2][j+1];

                 否则,cost[i][j] = min{cost[i-1][j], cost[i-1][j+1]} + 1;

代码如下:

复制代码
复制代码
 1 #include<iostream>
2 #include<cstring>
3 #include<cstdio>
4 using namespace std;
5 char s[1002];
6 int f[1001][1001];
7 int main()
8 {
9 int tcases, n, i, j;
10 cin >> tcases;
11 while(tcases--)
12 {
13 scanf("%s", s);
14 n = strlen(s);
15 memset(f, 0, sizeof(f));
16 for(i = 0; i < n; i++)
17 {
18 f[0][i] = 0;
19 f[1][i] = 0;
20 }
21 for(i = 2; i <= n; i++)
22 for(j = 0; j < n; j++)
23 {
24 if(s[j] == s[i+j-1])
25 {
26 f[i][j] = f[i-2][j+1];
27 }
28 else if(f[i-1][j] < f[i-1][j+1])
29 {
30 f[i][j] = f[i-1][j] + 1;
31 }
32 else f[i][j] = f[i-1][j+1] + 1;
33 }
34 printf("%d\n", f[n][0]);
35 }
36 return 0;
37 }
复制代码

本文转自博客园知识天地的博客,原文链接:回文字符串(动态规划解法),如需转载请自行联系原博主。

相关文章
|
8月前
|
算法
【算法】——动态规划题目讲解
【算法】——动态规划题目讲解
|
8月前
代码随想录 Day46 动态规划14 LeetCode T392 判断子序列 T115 不同的子序列
代码随想录 Day46 动态规划14 LeetCode T392 判断子序列 T115 不同的子序列
68 0
|
8月前
|
JavaScript
代码随想录 Day48 动态规划16 T647 回文子串 T516最长回文子序列
代码随想录 Day48 动态规划16 T647 回文子串 T516最长回文子序列
53 0
|
8月前
|
算法 索引
Leetcode算法系列| 1. 两数之和(四种解法)
Leetcode算法系列| 1. 两数之和(四种解法)
|
8月前
|
机器学习/深度学习 算法
【动态规划刷题 17】回文子串&& 最长回文子串
【动态规划刷题 17】回文子串&& 最长回文子串
|
存储 人工智能 算法
|
存储 JavaScript 算法
|
算法 Java Python
【LeetCode】 53. 最大子序和(动态规划)
53. 最大子序和(动态规划)
101 0
【LeetCode】 53. 最大子序和(动态规划)
|
存储 C语言
字符串逆序不一样的解法(递归)
字符串逆序不一样的解法(递归)
118 0