关于JAVA中的static方法、并发问题以及JAVA运行时内存模型

简介:

一、前言

最近在工作上用到了一个静态方法,跟同事交流的时候,被一个问题给问倒了,只怪基础不扎实...

问题大致是这样的,“在多线程环境下,静态方法中的局部变量会不会被其它线程给污染掉?”;

我当时的想法:方法中的局部变量在运行的时候,是存在JAVA栈中的,方法运行结束,局部变量也就都弹光了,理论上单线程的话是不会有问题的,我之所以不知道,是因为不清楚在JAVA内存模型中,一个线程对应一个栈,还是多个线程共享一个栈...

其实如果知道每个线程都有一个自己的JAVA栈的话,问题也就很清楚了,不会被其它线程给污染掉;

当然,问题并不能止于此,这个问题已经暴露出自己对这方面比较薄弱,因此打算对JAVA内存模型和多线程并发问题做个小小总结;

二、JAVA中的内存模型

程序运行的时候,内存主要由以下部分组成:

  1. :所有线程共享一个堆;存放的都是new 出来的对象;由垃圾回收器回收;
  2. 方法区:所有线程共享一个方法区;里面存放的内容有点杂,可以认为是除堆和栈中的其它东西(如类信息,静态变量,常量,代码等);Java虚拟机规范规定可以不对方法区进行垃圾回收,当并不是不回收,主要看具体虚拟机的实现,比如可以回收一些废弃常量和无用的类;
  3. 程序计数器:也叫PC,存放下一条指令所在单元的地址的地方;
  4. JAVA栈每个线程都有一个自己的JAVA栈;存放的一般是方法的局部变量,方法出口信息等;方法调用过程中,自动压栈出栈;ps:栈空间大小是有限制的;
  5. 本地方法栈:与JAVA栈类似,区别是使用的对象不一样,本地方法栈是给Native方法使用的,JAVA栈是给JAVA方式使用的;

附一张图片,会对java虚拟机有个整体的认识;

图片来自https://www.zybuluo.com/867976167/note/51071

 三、多线程访问共享内存情况

当多个线程执行同一个方法的时候,

什么时候可能会出现异常结果:

多个线程共享一块内存区域,在不加任何保护情况下,对其操作;

什么时候可能会得到正确的结果:

不使用共享内存,每个线程内存空间相互独立;

多线程共享一块内存区域,但是对这块共享区域加锁访问;

四、实例说明

情况一(多个线程共享一块内存区域,在不加任何保护情况下,对其操作):

写一个含静态方法的类,求和,方法内用了一个静态全局s(多个线程可以同时访问):

复制代码
package com.pichen.java.static_;

public class StaticTest {

    private static int s = 0;
    public static int sum(int n){
        s = 0;
        for(int i = 0; i <= n; i++){
            s += i;
            
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        return s;
    }
}
复制代码

写一个Thread,调用上面的静态方法:

复制代码
package com.pichen.java.static_;

public class ThreadCount implements Runnable{


    @Override
    public void run() {
        while(true){
            System.out.println(Thread.currentThread().getName() +":" +StaticTest.sum(100));
            try {
                Thread.sleep(10);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        
    }

}
复制代码

写个Main函数,起三个线程,观察运行结果,基本都是错误的:

复制代码
package com.pichen.java.static_;


public class Main {

    public static void main(String[] args) {

        ThreadCount t1 = new ThreadCount();
        new Thread(t1).start();
        
        ThreadCount t2 = new ThreadCount();
        new Thread(t2).start();
        
        ThreadCount t3 = new ThreadCount();
        new Thread(t3).start();
    }
}
复制代码

运行结果不符合预期:

复制代码
Thread-0:13968
Thread-1:13968
Thread-2:13968
Thread-0:13033
Thread-1:13033
Thread-2:13033 Thread-1:14725 Thread-0:14725
复制代码

 原因:多个线程同时对静态全局变量s进行操作导致;

ps:这里的例子是静态全局变量s,其实有很多种情况会引起结果异常问题,如在main方法中new出了一个对象,new出来的对象是存放在堆中的,多个线程共享,此时如果多线程同时操作该对象的话,也是有可能产生错误结果;

情况二(不使用共享内存,每个线程内存空间相互独立):

修改静态sum方法,使用局部变量s,如下:

复制代码
package com.pichen.java.static_;

public class StaticTest {

    private static int s = 0;
    public static int sum(int n){
        int s = 0;
        for(int i = 0; i <= n; i++){
            s += i;
            
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        return s;
    }
}
复制代码

运行程序,结果正确:

复制代码
Thread-1:5050
Thread-0:5050
Thread-2:5050
Thread-0:5050
Thread-2:5050
Thread-1:5050
Thread-0:5050
复制代码

情况三(多线程共享一块内存区域,但是对这块共享区域加锁访问):

复制代码
package com.pichen.java.static_;

public class StaticTest {

    private static int s = 0;
    public synchronized static int sum(int n){
        s = 0;
        for(int i = 0; i <= n; i++){
            s += i;
            
            try {
                Thread.sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        return s;
    }
}
复制代码

运行程序,结果正确:

复制代码
Thread-1:5050
Thread-0:5050
Thread-2:5050
Thread-0:5050
Thread-2:5050
Thread-1:5050 Thread-0:5050
复制代码

 本文转自风一样的码农博客园博客,原文链接:http://www.cnblogs.com/chenpi/p/5159558.html,如需转载请自行联系原作者

相关文章
|
25天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
26 0
|
27天前
|
存储 监控 算法
Java内存管理深度剖析:从垃圾收集到内存泄漏的全面指南####
本文深入探讨了Java虚拟机(JVM)中的内存管理机制,特别是垃圾收集(GC)的工作原理及其调优策略。不同于传统的摘要概述,本文将通过实际案例分析,揭示内存泄漏的根源与预防措施,为开发者提供实战中的优化建议,旨在帮助读者构建高效、稳定的Java应用。 ####
37 8
|
25天前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
29天前
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
55 5
|
27天前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
27天前
|
安全 Java 程序员
Java内存模型的深入理解与实践
本文旨在深入探讨Java内存模型(JMM)的核心概念,包括原子性、可见性和有序性,并通过实例代码分析这些特性在实际编程中的应用。我们将从理论到实践,逐步揭示JMM在多线程编程中的重要性和复杂性,帮助读者构建更加健壮的并发程序。
|
1月前
|
安全 Java 开发者
Java中WAIT和NOTIFY方法必须在同步块中调用的原因
在Java多线程编程中,`wait()`和`notify()`方法是实现线程间协作的关键。这两个方法必须在同步块或同步方法中调用,这一要求背后有着深刻的原因。本文将深入探讨为什么`wait()`和`notify()`方法必须在同步块中调用,以及这一机制如何确保线程安全和避免死锁。
45 4
|
1月前
|
Java
深入探讨Java中的中断机制:INTERRUPTED和ISINTERRUPTED方法详解
在Java多线程编程中,中断机制是协调线程行为的重要手段。了解和正确使用中断机制对于编写高效、可靠的并发程序至关重要。本文将深入探讨Java中的`Thread.interrupted()`和`Thread.isInterrupted()`方法的区别及其应用场景。
41 4
|
1月前
|
Java 数据处理 数据安全/隐私保护
Java处理数据接口方法
Java处理数据接口方法
26 1
|
1月前
|
算法 Java 开发者
Java内存管理与垃圾回收机制深度剖析####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,特别是其垃圾回收机制的工作原理、算法及实践优化策略。不同于传统的摘要概述,本文将以一个虚拟的“城市环卫系统”为比喻,生动形象地揭示Java内存管理的奥秘,旨在帮助开发者更好地理解并调优Java应用的性能。 ####