隐马尔可夫模型学习小记——forward算法+viterbi算法+forward-backward算法(Baum-welch算法)

简介:

网上关于HMM的学习资料、博客有很多,基本都是左边摘抄一点,右边摘抄一点,这里一个图,那里一个图,公式中有的变量说不清道不明,学起来很费劲。

经过浏览几篇博文(其实有的地方写的也比较乱),在7张4开的草稿纸上写公式、单步跟踪程序,终于还是搞清楚了HMM的原理。 

HMM学习过程:

1、搜索相关博客:

隐马尔可夫模型[博客](图示比较详细,前部分还可以,后部分公式有点乱):http://www.leexiang.com/hidden-markov-model

HMM简介、forward算法和viterbi算法[博客](含源码,算法描述不是很清晰,但是有源码可看)http://www.cnblogs.com/zhangchaoyang/articles/2219571.html

forward-backward算法[博客](含源码,算法描述不是很清晰,但是有源码可看):http://www.cnblogs.com/zhangchaoyang/articles/2220398.html

隐马尔科夫模型PPT—刘秉权[百度文库](算法流程、公式、参数都比较详细,有理论基础之后是很好的总结资源,但是没有具体例子,无基础的同学学习起来不是很形象。):http://wenku.baidu.com/view/2f0d944769eae009581bec04.html

----其他代码资源(没有理论基础,只看代码很难看懂HMM的原理)---

UMDHMM的C语言实现:http://www.kanungo.com/software/umdhmm-v1.02.zip

GitHub上一个UMDHMM的Python实现:https://github.com/dkyang/UMDHMM-python

2、根据隐马尔科夫模型PPT—刘秉权[百度文库],在5张4开草稿纸上把HMM流程顺一遍,下边是整理的笔记:

 

HMM三个算法的作用:

  forward算法:(评估)给定一HMM模型,计算一观察序列O1O2...OLEN出现的概率。

  viterbi算法:(解码)给定一HMM模型,计算一观察序列O1O2...OLEN对应的最可能的隐藏序列H1H2...HLEN及该隐藏序列出现的概率。

  forward-backward算法:(学习)给定一观察序列O1O2...OLEN,求解能够拟合这个序列的HMM模型。

HMM三个算法之间的关系:

forward算法中的forward变量就是forward-backforward算法中的forward变量,而backward变量与forward变量是类似的;

forward-backward算法是为了通过类似最大似然估计的方法找到局部最优的模型参数,在迭代过程中forward变量和backward变量起了很大作用;

viterbi算法和forward算法很相似,只是forward算法迭代过程需要的是sum,viterbi算法迭代过程需要的是max,而且viterbi算法除了输出概率,还要用逆推过程求解路径;

当用forwar-backward算法求解出模型参数之后,用户给出一个观察序列,用viterbi算法就能求出最可能的隐藏序列以及概率了。

 

首先是forward算法的Python实现:

复制代码
#-*-coding:utf-8-*-
__author__ = 'ZhangHe'
def forward(N,M,A,B,P,observed):
    p = 0.0
    #观察到的状态数目
    LEN = len(observed)
    #中间概率LEN*M
    Q = [([0]*N) for i in range(LEN)]
    #第一个观察到的状态,状态的初始概率乘上隐藏状态到观察状态的条件概率。
    for j in range(N):
        Q[0][j] = P[j]*B[j][observation.index(observed[0])]
    #第一个之后的状态,首先从前一天的每个状态,转移到当前状态的概率求和,然后乘上隐藏状态到观察状态的条件概率。
    for i in range(1,LEN):
        for j in range(N):
            sum = 0.0
            for k in range(N):
                sum += Q[i-1][k]*A[k][j]
            Q[i][j] = sum * B[j][observation.index(observed[i])]
    for i in range(N):
        p += Q[LEN-1][i]
    return p
# 3 种隐藏层状态:sun cloud rain
hidden = []
hidden.append('sun')
hidden.append('cloud')
hidden.append('rain')
N = len(hidden)
# 4 种观察层状态:dry dryish damp soggy
observation = []
observation.append('dry')
observation.append('damp')
observation.append('soggy')
M = len(observation)
# 初始状态矩阵(1*N第一天是sun,cloud,rain的概率)
P = (0.3,0.3,0.4)
# 状态转移矩阵A(N*N 隐藏层状态之间互相转变的概率)
A=((0.2,0.3,0.5),(0.1,0.5,0.4),(0.6,0.1,0.3))
# 混淆矩阵B(N*M 隐藏层状态对应的观察层状态的概率)
B=((0.1,0.5,0.4),(0.2,0.4,0.4),(0.3,0.6,0.1))
#假设观察到一组序列为observed,输出HMM模型(N,M,A,B,P)产生观察序列observed的概率
observed = ['dry']
print forward(N,M,A,B,P,observed)
observed = ['damp']
print forward(N,M,A,B,P,observed)
observed = ['dry','damp']
print forward(N,M,A,B,P,observed)
observed = ['dry','damp','soggy']
print forward(N,M,A,B,P,observed)
复制代码

输出结果:

0.21
0.51
0.1074
0.030162

其中前两个结果和手工计算的一样;

后两个结果没有手工计算,但是在调试程序过程中单步跟踪运行代码,运行过程与手工计算过程相同。

然后是Viterbi算法的Python实现:

复制代码
def viterbi(N,M,A,B,P,hidden,observed):
    sta = []
    LEN = len(observed)
    Q = [([0]*N) for i in range(LEN)]
    path = [([0]*N) for i in range(LEN)]
    #第一天计算,状态的初始概率*隐藏状态到观察状态的条件概率
    for j in range(N):
        Q[0][j]=P[j]*B[j][observation.index(observed[0])]
        path[0][j] = -1
    # 第一天以后的计算
    # 前一天的每个状态转移到当前状态的概率最大值
    # *
    # 隐藏状态到观察状态的条件概率
    for i in range(1,LEN):
        for j in range(N):
            max = 0.0
            index = 0
            for k in range(N):
                if(Q[i-1][k]*A[k][j] > max):
                    max = Q[i-1][k]*A[k][j]
                    index = k
            Q[i][j] = max * B[j][observation.index(observed[i])]
            path[i][j] = index
    #找到最后一天天气呈现哪种观察状态的概率最大
    max = 0.0
    idx = 0
    for i in range(N):
        if(Q[LEN-1][i]>max):
            max = Q[LEN-1][i]
            idx = i
    print "最可能隐藏序列的概率:"+str(max)
    sta.append(hidden[idx])
    #逆推回去找到每天出现哪个隐藏状态的概率最大
    for i in range(LEN-1,0,-1):
        idx = path[i][idx]
        sta.append(hidden[idx])
    sta.reverse()
    return sta;
# 3 种隐藏层状态:sun cloud rain
hidden = []
hidden.append('sun')
hidden.append('cloud')
hidden.append('rain')
N = len(hidden)
# 4 种观察层状态:dry dryish damp soggy
observation = []
observation.append('dry')
observation.append('damp')
observation.append('soggy')
M = len(observation)
# 初始状态矩阵(1*N第一天是sun,cloud,rain的概率)
P = (0.3,0.3,0.4)
# 状态转移矩阵A(N*N 隐藏层状态之间互相转变的概率)
A=((0.2,0.3,0.5),(0.1,0.5,0.4),(0.6,0.1,0.3))
# 混淆矩阵B(N*M 隐藏层状态对应的观察层状态的概率)
B=((0.1,0.5,0.4),(0.2,0.4,0.4),(0.3,0.6,0.1))
#假设观察到一组序列为observed,输出HMM模型(N,M,A,B,P)产生观察序列observed的概率
observed = ['dry','damp','soggy']
print viterbi(N,M,A,B,P,hidden,observed)
复制代码

输出:

最可能隐藏序列的概率:0.005184
['rain', 'rain', 'sun']

 GITHUB上一个Python实现的完整HMM:

复制代码
import numpy as np

DELTA = 0.001

class HMM:


    def __init__(self, pi, A, B):
        self.pi = pi
        self.A = A
        self.B = B
        self.M = B.shape[1]
        self.N = A.shape[0]
        
    def forward(self,obs):
        T = len(obs)
        N = self.N
        
        alpha = np.zeros([N,T])
        alpha[:,0] = self.pi[:] * self.B[:,obs[0]-1]                                                                                                      
    
        for t in xrange(1,T):
            for n in xrange(0,N):
                alpha[n,t] = np.sum(alpha[:,t-1] * self.A[:,n]) * self.B[n,obs[t]-1]
                     
        prob = np.sum(alpha[:,T-1])
        return prob, alpha
        
    def forward_with_scale(self, obs):
        """see scaling chapter in "A tutorial on hidden Markov models and 
        selected applications in speech recognition." 
        """
        T = len(obs)
        N = self.N
        alpha = np.zeros([N,T])
        scale = np.zeros(T)

        alpha[:,0] = self.pi[:] * self.B[:,obs[0]-1]
        scale[0] = np.sum(alpha[:,0])
        alpha[:,0] /= scale[0]

        for t in xrange(1,T):
            for n in xrange(0,N):
                alpha[n,t] = np.sum(alpha[:,t-1] * self.A[:,n]) * self.B[n,obs[t]-1]
            scale[t] = np.sum(alpha[:,t])
            alpha[:,t] /= scale[t]

        logprob = np.sum(np.log(scale[:]))
        return logprob, alpha, scale    
        
    def backward(self, obs):
        T = len(obs)
        N = self.N
        beta = np.zeros([N,T])
        
        beta[:,T-1] = 1
        for t in reversed(xrange(0,T-1)):
            for n in xrange(0,N):
                beta[n,t] = np.sum(self.B[:,obs[t+1]-1] * self.A[n,:] * beta[:,t+1])
                
        prob = np.sum(beta[:,0])
        return prob, beta

    def backward_with_scale(self, obs, scale):
        T = len(obs)
        N = self.N
        beta = np.zeros([N,T])

        beta[:,T-1] = 1 / scale[T-1]
        for t in reversed(xrange(0,T-1)):
            for n in xrange(0,N):
                beta[n,t] = np.sum(self.B[:,obs[t+1]-1] * self.A[n,:] * beta[:,t+1])
                beta[n,t] /= scale[t]
        
        return beta

    def viterbi(self, obs):
        T = len(obs)
        N = self.N
        psi = np.zeros([N,T]) # reverse pointer
        delta = np.zeros([N,T])
        q = np.zeros(T)
        temp = np.zeros(N)        
        
        delta[:,0] = self.pi[:] * self.B[:,obs[0]-1]    
        
        for t in xrange(1,T):
            for n in xrange(0,N):
                temp = delta[:,t-1] * self.A[:,n]    
                max_ind = argmax(temp)
                psi[n,t] = max_ind
                delta[n,t] = self.B[n,obs[t]-1] * temp[max_ind]

        max_ind = argmax(delta[:,T-1])
        q[T-1] = max_ind
        prob = delta[:,T-1][max_ind]

        for t in reversed(xrange(1,T-1)):
            q[t] = psi[q[t+1],t+1]    
            
        return prob, q, delta    
        
    def viterbi_log(self, obs):
        
        T = len(obs)
        N = self.N
        psi = np.zeros([N,T])
        delta = np.zeros([N,T])
        pi = np.zeros(self.pi.shape)
        A = np.zeros(self.A.shape)
        biot = np.zeros([N,T])

        pi = np.log(self.pi)        
        A = np.log(self.A)
        biot = np.log(self.B[:,obs[:]-1])

        delta[:,0] = pi[:] + biot[:,0]

        for t in xrange(1,T):
            for n in xrange(0,N):
                temp = delta[:,t-1] + self.A[:,n]    
                max_ind = argmax(temp)
                psi[n,t] = max_ind
                delta[n,t] = temp[max_ind] + biot[n,t]   

        max_ind = argmax(delta[:,T-1])
        q[T-1] = max_ind            
        logprob = delta[max_ind,T-1]      
                
        for t in reversed(xrange(1,T-1)):
            q[t] = psi[q[t+1],t+1]    

        return logprob, q, delta

    def baum_welch(self, obs):
        T = len(obs)
        M = self.M
        N = self.N        
        alpha = np.zeros([N,T])
        beta = np.zeros([N,T])
        scale = np.zeros(T)
        gamma = np.zeros([N,T])
        xi = np.zeros([N,N,T-1])
    
        # caculate initial parameters
        logprobprev, alpha, scale = self.forward_with_scale(obs)
        beta = self.backward_with_scale(obs, scale)            
        gamma = self.compute_gamma(alpha, beta)    
        xi = self.compute_xi(obs, alpha, beta)    
        logprobinit = logprobprev        
        
        # start interative 
        while True:
            # E-step
            self.pi = 0.001 + 0.999*gamma[:,0]
            for i in xrange(N):
                denominator = np.sum(gamma[i,0:T-1])
                for j in xrange(N): 
                    numerator = np.sum(xi[i,j,0:T-1])
                    self.A[i,j] = numerator / denominator
                                   
            self.A = 0.001 + 0.999*self.A
            for j in xrange(0,N):
                denominator = np.sum(gamma[j,:])
                for k in xrange(0,M):
                    numerator = 0.0
                    for t in xrange(0,T):
                        if obs[t]-1 == k:
                            numerator += gamma[j,t]
                    self.B[j,k] = numerator / denominator
            self.B = 0.001 + 0.999*self.B

            # M-step
            logprobcur, alpha, scale = self.forward_with_scale(obs)
            beta = self.backward_with_scale(obs, scale)            
            gamma = self.compute_gamma(alpha, beta)    
            xi = self.compute_xi(obs, alpha, beta)    

            delta = logprobcur - logprobprev
            logprobprev = logprobcur
            # print "delta is ", delta
            if delta <= DELTA:
                break     
                
        logprobfinal = logprobcur
        return logprobinit, logprobfinal                
            
    def compute_gamma(self, alpha, beta):
        gamma = np.zeros(alpha.shape)
        gamma = alpha[:,:] * beta[:,:]
        gamma = gamma / np.sum(gamma,0)
        return gamma
            
    def compute_xi(self, obs, alpha, beta):
        T = len(obs)
        N = self.N
        xi = np.zeros((N, N, T-1))
            
        for t in xrange(0,T-1):        
            for i in xrange(0,N):
                for j in xrange(0,N):
                    xi[i,j,t] = alpha[i,t] * self.A[i,j] * \
                                self.B[j,obs[t+1]-1] * beta[j,t+1]
            xi[:,:,t] /= np.sum(np.sum(xi[:,:,t],1),0)    
        return xi

def read_hmm(hmmfile):
    fhmm = open(hmmfile,'r') 

    M = int(fhmm.readline().split(' ')[1])
    N = int(fhmm.readline().split(' ')[1]) 
    
    A = np.array([])
    fhmm.readline()
    for i in xrange(N):
        line = fhmm.readline()
        if i == 0:
            A = np.array(map(float,line.split(',')))
        else:
            A = np.vstack((A,map(float,line.split(','))))
        
    B = np.array([])
    fhmm.readline()
    for i in xrange(N):
        line = fhmm.readline()
        if i == 0:
            B = np.array(map(float,line.split(',')))
        else:
            B = np.vstack((B,map(float,line.split(','))))
    
    fhmm.readline()
    line = fhmm.readline()
    pi = np.array(map(float,line.split(',')))
    
    fhmm.close()
    return M, N, pi, A, B 
    
def read_sequence(seqfile):
    fseq = open(seqfile,'r') 
    
    T = int(fseq.readline().split(' ')[1])
    line = fseq.readline()
    obs = np.array(map(int,line.split(',')))
    
    fseq.close()
    return T, obs
复制代码

 


本文转自ZH奶酪博客园博客,原文链接:http://www.cnblogs.com/CheeseZH/p/4229910.html,如需转载请自行联系原作者

相关文章
|
7天前
|
算法 Serverless
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
如何实现马尔可夫链蒙特卡罗MCMC模型、Metropolis算法?
14 0
|
8天前
|
算法 Serverless
R语言中实现马尔可夫链蒙特卡罗MCMC模型
R语言中实现马尔可夫链蒙特卡罗MCMC模型
21 0
|
1月前
|
机器学习/深度学习 人工智能 算法
神经网络算法——损失函数(Loss Function)
神经网络算法——损失函数(Loss Function)
25 0
|
1月前
|
机器学习/深度学习 算法
反向传播原理的梯度下降算法
反向传播原理的梯度下降算法
|
机器学习/深度学习 存储 人工智能
反向传播不香了?解读 Hinton 大佬的 Forward-Forward 算法
反向传播不香了?解读 Hinton 大佬的 Forward-Forward 算法
|
机器学习/深度学习 自然语言处理 算法
机器学习算法之——隐马尔可夫模型(Hidden Markov Models,HMM)
隐马尔可夫模型(Hidden Markov Model,HMM)是结构最简单的动态贝叶斯网,这是一种著名的有向图模型,主要用于时序数据建模(语音识别、自然语言处理等)。
机器学习算法之——隐马尔可夫模型(Hidden Markov Models,HMM)
梯度下降算法过程以及感知机算法与梯度下降算法区别
梯度下降算法过程以及感知机算法与梯度下降算法区别
|
机器学习/深度学习
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
|
机器学习/深度学习 算法 数据可视化
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
ML:基于自定义数据集利用Logistic、梯度下降算法GD、LoR逻辑回归、Perceptron感知器、SVM支持向量机、LDA线性判别分析算法进行二分类预测(决策边界可视化)
|
机器学习/深度学习 存储 搜索推荐
【树模型与集成学习】(task6)梯度提升树GBDT+LR
协同过滤和矩阵分解存在的劣势就是仅利用了用户与物品相互行为信息进行推荐, 忽视了用户自身特征, 物品自身特征以及上下文信息等,导致生成的结果往往会比较片面。
343 0
【树模型与集成学习】(task6)梯度提升树GBDT+LR