判断点是否在多边形内部

简介:

如何判断一个点是否在多边形内部?

(1)面积和判别法:判断目标点与多边形的每条边组成的三角形面积和是否等于该多边形,相等则在多边形内部。

(2)夹角和判别法:判断目标点与所有边的夹角和是否为360度,为360度则在多边形内部。

(3)引射线法:从目标点出发引一条射线,看这条射线和多边形所有边的交点数目。如果有奇数个交点,则说明在内部,如果有偶数个交点,则说明在外部。

具体做法:将测试点的Y坐标与多边形的每一个点进行比较,会得到一个测试点所在的行与多边形边的交点的列表。在下图的这个例子中有8条边与测试点所在的行相交,而有6条边没有相交。如果测试点的两边点的个数都是奇数个则该测试点在多边形内,否则在多边形外。在这个例子中测试点的左边有5个交点,右边有三个交点,它们都是奇数,所以点在多边形内。

算法图解:

关于这个算法的具体的更多图形例子:http://alienryderflex.com/polygon/

参考代码:

复制代码
int pnpoly(int nvert, float *vertx, float *verty, float testx, float testy)
{
  int i, j, c = 0;
  for (i = 0, j = nvert-1; i < nvert; j = i++) 
  {
    if ( ((verty[i]>testy) != (verty[j]>testy)) &&
     (testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
       c = !c;
  }
  return c;
}
复制代码

来自一个polygon的内部实现:

复制代码
      public bool IsInside(PointLatLng p)
      {
         int count = Points.Count;

         if(count < 3)
         {
            return false;
         }

         bool result = false;

         for(int i = 0, j = count - 1; i < count; i++)
         {
            var p1 = Points[i];
            var p2 = Points[j];

            if(p1.Lat < p.Lat && p2.Lat >= p.Lat || p2.Lat < p.Lat && p1.Lat >= p.Lat)
            {
               if(p1.Lng + (p.Lat - p1.Lat) / (p2.Lat - p1.Lat) * (p2.Lng - p1.Lng) < p.Lng)
               {
                  result = !result;
               }
            }
            j = i;
         }
         return result;
      }
复制代码

特殊情况:要检测的点在多变形的一条边上,射线法判断的结果是不确定的,需要特殊处理(If the test point is on the border of the polygon, this algorithm will deliver unpredictable results)。

计算一个多边形的面积(area of a polygon):

复制代码
        private static double SignedPolygonArea(List<PointLatLng> points)
        {
            // Add the first point to the end.
            int pointsCount = points.Count;
            PointLatLng[] pts = new PointLatLng[pointsCount + 1];
            points.CopyTo(pts, 0);
            pts[pointsCount] = points[0];

            for (int i = 0; i < pointsCount + 1; ++i)
            {
                pts[i].Lat = pts[i].Lat * (System.Math.PI * 6378137 / 180);
                pts[i].Lng = pts[i].Lng * (System.Math.PI * 6378137 / 180);
            }

            // Get the areas.
            double area = 0;
            for (int i = 0; i < pointsCount; i++)
            {
                area += (pts[i + 1].Lat - pts[i].Lat) * (pts[i + 1].Lng + pts[i].Lng) / 2;
            }

            // Return the result.
            return area;
        }

        /// <summary>
        /// Get the area of a polygon
        /// </summary>
        /// <param name="points"></param>
        /// <returns></returns>
        public static double GetPolygonArea(List<PointLatLng> points)
        {
            // Return the absolute value of the signed area.
            // The signed area is negative if the polygon is oriented clockwise.
            return Math.Abs(SignedPolygonArea(points));
        }
复制代码

 

 

 

参考资料:

http://alienryderflex.com/polygon/

http://en.wikipedia.org/wiki/Point_in_polygon

http://www.codeproject.com/Tips/84226/Is-a-Point-inside-a-Polygon


    本文转自阿凡卢博客园博客,原文链接:http://www.cnblogs.com/luxiaoxun/p/3722358.html,如需转载请自行联系原作者


相关文章
|
移动开发 前端开发
碰撞检测
刚才回答了一个H5游戏的问答。心血来潮,就想写写碰撞检测,废话不多说,直接怼。
435 0
碰撞检测
|
计算机视觉
OpenCV中矩阵的归一化
原帖地址:http://windrocblog.sinaapp.com/?p=486       图像处理中,图片像素点单通道值一般是[0-255]的unsigned char类型,将其转化到[0,1]之间,更方便计算,这就需要用到矩阵的归一化运算。
821 0
|
4天前
|
人工智能 运维 安全
|
2天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
9天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
814 109
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
410 9