一个轻量级分布式RPC框架--NettyRpc

本文涉及的产品
云原生网关 MSE Higress,422元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介:

1、背景

最近在搜索Netty和Zookeeper方面的文章时,看到了这篇文章《轻量级分布式 RPC 框架》,作者用Zookeeper、Netty和Spring写了一个轻量级的分布式RPC框架。花了一些时间看了下他的代码,写的干净简单,写的RPC框架可以算是一个简易版的dubbo。这个RPC框架虽小,但是麻雀虽小,五脏俱全,有兴趣的可以学习一下。

本人在这个简易版的RPC上添加了如下特性:

* 服务异步调用的支持,回调函数callback的支持

* 客户端使用长连接(在多次调用共享连接)

* 服务端异步多线程处理RPC请求

项目地址:https://github.com/luxiaoxun/NettyRpc

2、简介

RPC,即 Remote Procedure Call(远程过程调用),调用远程计算机上的服务,就像调用本地服务一样。RPC可以很好的解耦系统,如WebService就是一种基于Http协议的RPC。

这个RPC整体框架如下:

这个RPC框架使用的一些技术所解决的问题:

服务发布与订阅:服务端使用Zookeeper注册服务地址,客户端从Zookeeper获取可用的服务地址。

通信:使用Netty作为通信框架。

Spring:使用Spring配置服务,加载Bean,扫描注解。

动态代理:客户端使用代理模式透明化服务调用。

消息编解码:使用Protostuff序列化和反序列化消息。

3、服务端发布服务

使用注解标注要发布的服务

服务注解

复制代码
@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Component
public @interface RpcService {
    Class<?> value();
}
复制代码

一个服务接口:

复制代码
public interface HelloService {

    String hello(String name);

    String hello(Person person);
}
复制代码

一个服务实现:使用注解标注

复制代码
@RpcService(HelloService.class)
public class HelloServiceImpl implements HelloService {

    @Override
    public String hello(String name) {
        return "Hello! " + name;
    }

    @Override
    public String hello(Person person) {
        return "Hello! " + person.getFirstName() + " " + person.getLastName();
    }
}
复制代码

服务在启动的时候扫描得到所有的服务接口及其实现:

复制代码
@Override
    public void setApplicationContext(ApplicationContext ctx) throws BeansException {
        Map<String, Object> serviceBeanMap = ctx.getBeansWithAnnotation(RpcService.class);
        if (MapUtils.isNotEmpty(serviceBeanMap)) {
            for (Object serviceBean : serviceBeanMap.values()) {
                String interfaceName = serviceBean.getClass().getAnnotation(RpcService.class).value().getName();
                handlerMap.put(interfaceName, serviceBean);
            }
        }
    }
复制代码

在Zookeeper集群上注册服务地址:

  ServiceRegistry

这里在原文的基础上加了AddRootNode()判断服务父节点是否存在,如果不存在则添加一个PERSISTENT的服务父节点,这样虽然启动服务时多了点判断,但是不需要手动命令添加服务父节点了。

关于Zookeeper的使用原理,可以看这里《ZooKeeper基本原理》。

4、客户端调用服务

使用代理模式调用服务:

复制代码
public class RpcProxy {

    private String serverAddress;
    private ServiceDiscovery serviceDiscovery;

    public RpcProxy(String serverAddress) {
        this.serverAddress = serverAddress;
    }

    public RpcProxy(ServiceDiscovery serviceDiscovery) {
        this.serviceDiscovery = serviceDiscovery;
    }

    @SuppressWarnings("unchecked")
    public <T> T create(Class<?> interfaceClass) {
        return (T) Proxy.newProxyInstance(
                interfaceClass.getClassLoader(),
                new Class<?>[]{interfaceClass},
                new InvocationHandler() {
                    @Override
                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
                        RpcRequest request = new RpcRequest();
                        request.setRequestId(UUID.randomUUID().toString());
                        request.setClassName(method.getDeclaringClass().getName());
                        request.setMethodName(method.getName());
                        request.setParameterTypes(method.getParameterTypes());
                        request.setParameters(args);

                        if (serviceDiscovery != null) {
                            serverAddress = serviceDiscovery.discover();
                        }
                        if(serverAddress != null){
                            String[] array = serverAddress.split(":");
                            String host = array[0];
                            int port = Integer.parseInt(array[1]);

                            RpcClient client = new RpcClient(host, port);
                            RpcResponse response = client.send(request);

                            if (response.isError()) {
                                throw new RuntimeException("Response error.",new Throwable(response.getError()));
                            } else {
                                return response.getResult();
                            }
                        }
                        else{
                            throw new RuntimeException("No server address found!");
                        }
                    }
                }
        );
    }
}
复制代码

这里每次使用代理远程调用服务,从Zookeeper上获取可用的服务地址,通过RpcClient send一个Request,等待该Request的Response返回。这里原文有个比较严重的bug,在原文给出的简单的Test中是很难测出来的,原文使用了obj的wait和notifyAll来等待Response返回,会出现“假死等待”的情况:一个Request发送出去后,在obj.wait()调用之前可能Response就返回了,这时候在channelRead0里已经拿到了Response并且obj.notifyAll()已经在obj.wait()之前调用了,这时候send后再obj.wait()就出现了假死等待,客户端就一直等待在这里。使用CountDownLatch可以解决这个问题。

注意:这里每次调用的send时候才去和服务端建立连接,使用的是短连接,这种短连接在高并发时会有连接数问题,也会影响性能。

从Zookeeper上获取服务地址:

  ServiceDiscovery

每次服务地址节点发生变化,都需要再次watchNode,获取新的服务地址列表。

5、消息编码

请求消息:

  RpcRequest

响应消息:

  RpcResponse

消息序列化和反序列化工具:(基于 Protostuff 实现)

  SerializationUtil

由于处理的是TCP消息,本人加了TCP的粘包处理Handler

channel.pipeline().addLast(new LengthFieldBasedFrameDecoder(65536,0,4,0,0))

消息编解码时开始4个字节表示消息的长度,也就是消息编码的时候,先写消息的长度,再写消息。

6、性能改进

1)服务端请求异步处理

Netty本身就是一个高性能的网络框架,从网络IO方面来说并没有太大的问题。

从这个RPC框架本身来说,在原文的基础上把Server端处理请求的过程改成了多线程异步:

复制代码
 public void channelRead0(final ChannelHandlerContext ctx,final RpcRequest request) throws Exception {
        RpcServer.submit(new Runnable() {
            @Override
            public void run() {
                LOGGER.debug("Receive request " + request.getRequestId());
                RpcResponse response = new RpcResponse();
                response.setRequestId(request.getRequestId());
                try {
                    Object result = handle(request);
                    response.setResult(result);
                } catch (Throwable t) {
                    response.setError(t.toString());
                    LOGGER.error("RPC Server handle request error",t);
                }
                ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE).addListener(new ChannelFutureListener() {
                    @Override
                    public void operationComplete(ChannelFuture channelFuture) throws Exception {
                        LOGGER.debug("Send response for request " + request.getRequestId());
                    }
                });
            }
        });
    }
复制代码

Netty 4中的Handler处理在IO线程中,如果Handler处理中有耗时的操作(如数据库相关),会让IO线程等待,影响性能。

2)服务端长连接的管理

 客户端保持和服务进行长连接,不需要每次调用服务的时候进行连接,长连接的管理(通过Zookeeper获取有效的地址)。

通过监听Zookeeper服务节点值的变化,动态更新客户端和服务端保持的长连接。这个事情现在放在客户端在做,客户端保持了和所有可用服务的长连接,给客户端和服务端都造成了压力,需要解耦这个实现。

3)客户端请求异步处理

客户端请求异步处理的支持,不需要同步等待:发送一个异步请求,返回Feature,通过Feature的callback机制获取结果。

IAsyncObjectProxy client = rpcClient.createAsync(HelloService.class);
RPCFuture helloFuture = client.call("hello", Integer.toString(i));
String result = (String) helloFuture.get(3000, TimeUnit.MILLISECONDS);

 

个人觉得该RPC的待改进项:

* 编码序列化的多协议支持。

 

项目持续更新中。

项目地址:https://github.com/luxiaoxun/NettyRpc

 

参考:

轻量级分布式 RPC 框架:http://my.oschina.net/huangyong/blog/361751

你应该知道的RPC原理:http://www.cnblogs.com/LBSer/p/4853234.html

 


    本文转自阿凡卢博客园博客,原文链接http://www.cnblogs.com/luxiaoxun/p/5272384.html:,如需转载请自行联系原作者

相关文章
|
6月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
566 0
分布式爬虫框架Scrapy-Redis实战指南
|
10月前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
4月前
|
监控 Java 调度
SpringBoot中@Scheduled和Quartz的区别是什么?分布式定时任务框架选型实战
本文对比分析了SpringBoot中的`@Scheduled`与Quartz定时任务框架。`@Scheduled`轻量易用,适合单机简单场景,但存在多实例重复执行、无持久化等缺陷;Quartz功能强大,支持分布式调度、任务持久化、动态调整和失败重试,适用于复杂企业级需求。文章通过特性对比、代码示例及常见问题解答,帮助开发者理解两者差异,合理选择方案。记住口诀:单机简单用注解,多节点上Quartz;若是任务要可靠,持久化配置不能少。
448 4
|
9月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
3230 66
|
10月前
|
数据库
如何在Seata框架中配置分布式事务的隔离级别?
总的来说,配置分布式事务的隔离级别是实现分布式事务管理的重要环节之一,需要认真对待和仔细调整,以满足业务的需求和性能要求。你还可以进一步深入研究和实践 Seata 框架的配置和使用,以更好地应对各种分布式事务场景的挑战。
295 63
|
8月前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
353 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
10月前
|
存储 Java 关系型数据库
在Spring Boot中整合Seata框架实现分布式事务
可以在 Spring Boot 中成功整合 Seata 框架,实现分布式事务的管理和处理。在实际应用中,还需要根据具体的业务需求和技术架构进行进一步的优化和调整。同时,要注意处理各种可能出现的问题,以保障分布式事务的顺利执行。
676 53
|
8月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
374 8
|
9月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
311 2
|
10月前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
194 1

热门文章

最新文章