计算机上面常用的计算单位 & 个人计算机架构与接口设备

简介:

计算机上面常用的计算单位

  容量单位 

  

 速度单位 

  此网络常使用的单位为 Mbps 是 Mbits per second,亦即是每秒多少 Mbit。

 

 

 

 

个人计算机架构与接口设备

  整个主板上面最重要的就是芯片组了!而芯片组通常又分为两个网桥来控制各组件的沟通, 分别是:

  (1)北桥:负责链接速度较快的CPU、内存与显卡等组件;

  (2)南桥:负责连接速度较慢的周边接口, 包括硬盘、USB、网卡等等。

CPU

   最上方的中央部分,那就是CPU插槽。 由亍CPU负责大量运算,因此CPU通 常是具有相当高发热量的组件。所以如果你曾经拆开过主板, 应该就会看到CPU上头通常会安装一颗风扇来主动散热的。

  由于x86架构的CPU在Intel的Pentium系列(1993年)后就有不统一的脚位不设计,为了将不同种类的CPU规范等级, 所以就有i386,i586,i686等名词出现了。基本上,在Intel Pentium MMX与AMD K6年代的CPU称为i586等级, 而Intel Celeron与AMD Athlon(K7)年代之后的32位CPU 就称为i686等级。 至于目前的64位CPU则统称为x86_64等级。

 

内存

  RAM、ROM

 

显卡

  显卡内存容量将会影响到最终你的屏幕分辨率与颜色深度

 

 硬盘

  硬盘依据桌上型与笔记本电脑而分为3.5寸及2.5寸的大小。

在硬盘盒里面其实是由许许多多的圆形磁盘片、机械手臂、 磁头与主轴马达所组成的,整个内部如同下图所示: 

  

 

 


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5243233.html,如需转载请自行联系原作者

相关文章
|
3月前
|
存储 缓存 安全
某鱼电商接口架构深度剖析:从稳定性到高性能的技术密码
某鱼电商接口架构揭秘:分层解耦、安全加固、性能优化三维设计,实现200ms内响应、故障率低于0.1%。详解三层架构、多引擎存储、异步发布、WebSocket通信与全链路防护,助力开发者突破电商接口“三难”困境。
|
4月前
|
JSON 供应链 监控
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
|
6月前
|
缓存 人工智能 监控
1688 平台商品详情接口技术揭秘:架构演进与实战优化
本文深入解析了1688商品详情接口的技术架构与核心实现,涵盖微服务拆分、多级缓存、数据聚合及高可用策略,展示了如何构建高性能电商接口系统,并展望AI技术在商品展示中的应用。
|
6月前
|
缓存 监控 数据安全/隐私保护
京东平台商品详情接口技术解密:高性能架构与实战经验
本文深入解析京东商品详情接口技术架构,涵盖微服务设计、多级缓存、异步加载及数据一致性保障等关键策略,分享高并发场景下的性能优化实践,助力电商系统稳定高效运行。
|
10月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
940 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
577 4
【AI系统】计算图优化架构
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
1761 10
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
982 7
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
400 3