Spark RDD概念学习系列之RDD的转换(十)

简介:

 RDD的转换

      

   Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG。接下来以“Word Count”为例,详细描述这个DAG生成的实现过程。

   Spark Scala版本的Word Count程序如下:

1
2
3
4
5
1 : <span style= "color: #ff0000;" ><strong>val file = spark.textFile( "hdfs://..." )</strong></span>
2 : <strong><span style= "color: #ff0000;" >val counts = file.flatMap(line => line.split( " " ))</span></strong>
3 : <strong><span style= "color: #ff0000;" > .map(word => (word, 1 ))</span></strong>
4 : <strong><span style= "color: #ff0000;" > .reduceByKey(_ + _)</span></strong>
5 :<strong><span style= "color: #ff0000;" > counts.saveAsTextFile( "hdfs://..." )</span></strong>

     file和counts都是RDD,其中file是从HDFS上读取文件并创建了RDD,而counts是在file的基础上通过flatMap、map和reduceByKey这三个RDD转换生成的。最后,counts调用了动作saveAsTextFile,用户的计算逻辑就从这里开始提交的集群进行计算。那么上面这5行代码的具体实现是什么呢?

 

     1)行1:spark是org.apache.spark.SparkContext的实例,它是用户程序和Spark的交互接口。spark会负责连接到集群管理者,并根据用户设置或者系统默认设置来申请计算资源,完成RDD的创建等。

  spark.textFile("hdfs://...")就完成了一个org.apache.spark.rdd.HadoopRDD的创建,并且完成了一次RDD的转换:通过map转换到一个org.apache.spark.rdd.MapPartitions-RDD。

  也就是说,file实际上是一个MapPartitionsRDD,它保存了文件的所有行的数据内容。

 

   2)行2:将file中的所有行的内容,以空格分隔为单词的列表,然后将这个按照行构成的单词列表合并为一个列表。最后,以每个单词为元素的列表被保存到MapPartitionsRDD

 

    3)行3:将第2步生成的MapPartitionsRDD再次经过map将每个单词word转为(word, 1)的元组。这些元组最终被放到一个MapPartitionsRDD中。

 

    4)行4:首先会生成一个MapPartitionsRDD,起到map端combiner的作用;然后会生成一个ShuffledRDD,它从上一个RDD的输出读取数据,作为reducer的开始;最后,还会生成一个MapPartitionsRDD,起到reducer端reduce的作用。

 

    5)行5:首先会生成一个MapPartitionsRDD,这个RDD会通过调用org.apache.spark.rdd.PairRDDFunctions#saveAsHadoopDataset向HDFS输出RDD的数据内容。最后,调用org.apache.spark.SparkContext#runJob向集群提交这个计算任务。

 

    RDD之间的关系可以从两个维度来理解:一个是RDD是从哪些RDD转换而来,也就是RDD的parent RDD(s)是什么;还有就是依赖于parent RDD(s)的哪些Partition(s)。这个关系,就是RDD之间的依赖,org.apache.spark.Dependency。根据依赖于parent RDD(s)的Partitions的不同情况,Spark将这种依赖分为两种,一种是宽依赖,一种是窄依赖。  

    RDD的依赖关系(宽依赖和窄依赖)

 

 

如,假设,现在如下

 

 

 

 

所以,

比如,我这里是刚好是4台worker1、worker2、worker3、worker4。还有1台Master。

 

 soga,

1
<span style= "color: #ff0000;" ><strong>val file = spark.textFile( "hdfs://..." )<br></strong></span>

   1)行1:spark是org.apache.spark.SparkContext的实例,它是用户程序和Spark的交互接口。spark会负责连接到集群管理者,并根据用户设置或者系统默认设置来申请计算资源,完成RDD的创建等。

  spark.textFile("hdfs://...")就完成了一个org.apache.spark.rdd.HadoopRDD的创建,并且完成了一次RDD的转换:通过map转换到一个org.apache.spark.rdd.MapPartitions-RDD。

  也就是说,file实际上是一个MapPartitionsRDD,它保存了文件的所有行的数据内容。

 

         想要成为高手,一定要多看源码,看上几十遍都太少了,包括看上10个版本的源码。无论是hadoop、还是spark

 

1
<span style= "color: #ff0000;" ><strong>val counts = file.flatMap(line => line.split( " " ))</strong></span><br>  2 )<strong>行 2 </strong>:将file中的所有行的内容,以空格分隔为单词的列表,然后将这个按照行构成的单词列表合并为一个列表。最后,以每个单词为元素的列表被保存到<strong>MapPartitionsRDD</strong>。<br><br><br>

1
<span style= "color: #ff0000;" ><strong>.map(word => (word, 1 ))</strong></span><br>    3 )<strong>行 3 </strong>:将第 2 步生成的MapPartitionsRDD再次经过map将每个单词word转为(word, 1 )的元组。这些元组最终被放到一个<strong>MapPartitionsRDD</strong>中。

 

 

 

 

 

 

至此,windows本地,已经完成了。

 

下面是在网络里了。

         注意啦! 分区是计算概念,分片是数据概念。

有4台worker,每台都在自己内存计算。

1
<strong>.reduceByKey(_ + _)</strong>

 4)行4:首先会生成一个MapPartitionsRDD,起到map端combiner的作用;然后会生成一个ShuffledRDD,它从上一个RDD的输出读取数据,作为reducer的开始;最后,还会生成一个MapPartitionsRDD,起到reducer端reduce的作用。

 

 

 

 

 

总结:

 

第一个stage :

         HadoopRDD  ->   MapPartitionRDD  ->   MapPartitionsRDD  ->  MapPartitionsRDD  ->  MapPartitionsRDD

 

第二个stage :   

  Stage shuffledRDD   ->  MapPartitionsRDD

 



本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5723764.html,如需转载请自行联系原作者

相关文章
|
2月前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
166 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
556 35
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
225 0
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
245 0
|
10月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
456 15
|
10月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
289 0
【赵渝强老师】Spark RDD的缓存机制
|
分布式计算 算法 Spark
spark学习之 GraphX—预测社交圈子
spark学习之 GraphX—预测社交圈子
344 0
|
分布式计算 Scala Spark
educoder的spark算子学习
educoder的spark算子学习
202 0
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
270 0
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
190 0

热门文章

最新文章