栈的应用之中缀表达式转后缀表达式

简介:

1,中缀表达式的定义及为什么要将中缀表达式转换为后缀表达式?

中缀表达式(中缀记法)
中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。
虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值要比中缀表达式简单。

比如,计算机计算后缀表达式的过程如下----后缀表达式的计算机求值:
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次栈顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“3 4 + 5 × 6 -”:
(1) 从左至右扫描,将3和4压入堆栈;
(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 将5入栈;
(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
(5) 将6入栈;
(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。

 

2,中缀表达式转换为后缀表达式算法:

这里只用了一个栈来保存扫描中缀表达式时遇到的运算符。扫描过程中运算的操作数则直接 append 到输出表达式的末尾

运算符在何种情况下压入栈?

若当前扫描的运算符的优先级大于栈顶运算符的优先级,则进行入栈。

若当前扫描的运算符的优先级与栈顶运算符的优先级相同,则需要判断当前扫描的运算符运算时的结合方向,若结合方向为从左至右,则不需要入栈;若结合方向为从右至左,则入栈。其中,加、减、乘、除 运算符的结合方向为从左至右,而求幂运算符的结合方向为从右至左。由于求幂运算符的最优级最高且它的结合方向为从右至左,故扫描遇到求幂运算符时直接将其入栈。

对于中缀表达式中的括号的处理

左括号总是被压入栈。一旦左括号在栈中,就被当作优先级最低的运算符来对待,即:任何一个后继的运算符都将被压入栈。在遇到一个右括号时,从栈中弹出运算符并将它们添加到输出表达式末尾,直至弹出一个左括号为止(后缀表达式中没有括号,当然括号也就不需要添加到输出表达式了)。然后,算法再继续....

 

在从左向右处理中缀表达式的过程中,根据遇到的符号,执行下列动作:

①操作数         每个操作数都添加到输出表达式末尾(输出表达式就是最终得到的后缀表达式结果)

②运算符 ^(求幂运算)       ^ 压入栈(因为在所有的运算符中(加、减、乘、除、求幂)求幂运算的优先级最高,且求幂运算的结合方式为从右至左)

③运算符 + -  * /     从栈中弹出运算符,并将它们添加到输出表达式末尾,直至栈空或者栈顶优先级比新的运算符低,然后再将新的运算符压入栈

④左括号 (      压入栈

⑤右括号 )     从栈中弹出运算符,将它们添加到输出表达式末尾,直至弹出一个左括号,丢弃这两个括号

 

3,具体的中缀表达式转后缀表达式的JAVA代码实现

注意:程序中用来存放操作符的栈 不是 JDK 中java.util 包的Stack,而是自己实现的Stack。参考:使用JAVA数组实现顺序栈

复制代码
 1 import list.SequenceStack;
 2 import list.Stack;
 3 
 4 public class Postfix {
 5     /*
 6      * @Task: 将中缀表达式转换为后缀表达式
 7      * @param: infix 合法的中缀表达式字符串
 8      * @return: 与infix等价的后缀表达式字符串
 9      */
10     public static String convert2Postfix(String infix){
11         StringBuffer postfix = new StringBuffer();//初始化一个字符串缓冲区存放转换过程中生成的后缀表达式
12         Stack<Character> operatorStack = new SequenceStack<Character>();
13         int characterCount = infix.length();
14         char topCharactor;
15         
16         for(int index = 0; index < characterCount; index++){
17             boolean done = false;
18             char nextCharacter = infix.charAt(index);
19             if(isVariable(nextCharacter))
20                 postfix = postfix.append(nextCharacter);
21             else{
22                 switch(nextCharacter)
23                 {
24                 case '^':
25                     operatorStack.push(nextCharacter);
26                     break;
27                 case '+': case '-': case '*': case '/':
28                     while(!done && !operatorStack.empty()){
29                         topCharactor = operatorStack.peek();
30                         if(getPrecedence(nextCharacter) <= getPrecedence(topCharactor)){
31                             postfix = postfix.append(topCharactor);
32                             operatorStack.pop();
33                         }
34                         else
35                             done = true;//当栈顶元素逐渐pop后,nextCharacter的优先级大于 栈顶的优先级
36                     }//end while
37                     operatorStack.push(nextCharacter);//当nextCharacter的优先级大于 栈顶的优先级,再把nextCharacter push 入栈
38                     break;
39                 case '(':
40                     operatorStack.push(nextCharacter);
41                     break;
42                 case ')':
43                     topCharactor = operatorStack.pop();
44                     while(topCharactor != '('){
45                         postfix = postfix.append(topCharactor);
46                         topCharactor = operatorStack.pop();
47                     }
48                     break;
49                 default:break;
50                 }//end switch
51             }
52         }//end for
53         
54         while(!operatorStack.empty()){
55             topCharactor = operatorStack.pop();
56             postfix = postfix.append(topCharactor);
57         }
58         return postfix.toString();
59     }
60     
61     private static int getPrecedence(char operator){
62         switch(operator)
63         {
64         case '(': case ')': return 0;//实际只有 + - * / 才需要调用该函数比较优先级
65         case '+': case '-': return 1;// + - 优先级为1
66         case '*': case '/': return 2;// * / 优先级为2
67         case '^':             return 3;
68         }
69         return -1;
70     }
71     
72     //操作数默认用字母来表示
73     private static boolean isVariable(char charactor){
74         return Character.isLetter(charactor);
75     }
76     
77     //for test purpose
78     public static void main(String[] args) {
79         String postfix = convert2Postfix("a/b*(c +(d-e))");
80         System.out.println(postfix);
81     }
82 }
复制代码

 

参考资料:前缀、中缀、后缀表达式

算法详细解释参考《数据结构与算法JAVA语言描述第二版》--Frank M.Carrano 著.第21章


本文转自hapjin博客园博客,原文链接:http://www.cnblogs.com/hapjin/,如需转载请自行联系原作者

相关文章
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
56 1
|
2月前
|
存储 监控 算法
公司员工泄密防护体系中跳表数据结构及其 Go 语言算法的应用研究
在数字化办公中,企业面临员工泄密风险。本文探讨使用跳表(Skip List)数据结构优化泄密防护系统,提升敏感数据监测效率。跳表以其高效的动态数据处理能力,为企业信息安全管理提供了可靠技术支持。
42 0
|
3月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
42 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
8月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
329 77
|
7月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
147 11
|
7月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
8月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
236 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
8月前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
182 7
|
10月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
850 9