Hadoop概念学习系列之再谈hadoop集群里的本地模式、伪分布模式和全分布模式(三十七)

简介:

能看懂博主我此博文,相信你已经有了一定基础了。

对于本地模式、伪分布模式和全分布模式的概念,这里,我不多赘述。太多资料和博客,随便在网上一搜就好。

比如《hadoop实战 第二版》陆嘉恒老师等。

  我这里呢,是再次挖掘深入。

 

  我们知道,如伪分布模式或全分布式模式,里有着很多的java进程(这个,可用jps查看)。有过动手试验的都知道,

这两种模式,速度明显比本地模式要快,为什么呢?

  答:原因在于,本地独立模式将每个单独任务执行的信息都打印在屏幕上,而在伪分布模式和全分布式模式下,这些信息只被写入在运行主机的日志文件中。


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6092384.html,如需转载请自行联系原作者

相关文章
|
2月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
184 6
|
2月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
78 2
|
1月前
|
分布式计算 资源调度 Hadoop
【赵渝强老师】部署Hadoop的本地模式
本文介绍了Hadoop的目录结构及本地模式部署方法,包括解压安装、设置环境变量、配置Hadoop参数等步骤,并通过一个简单的WordCount程序示例,演示了如何在本地模式下运行MapReduce任务。
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
80 4
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
38 3
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
60 3
|
2月前
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
70 1
|
1天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
19 4
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
110 2
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
74 1
下一篇
DataWorks