armv8(aarch64)linux内核中flush_dcache_all函数详细分析【转】

简介:

转自:http://blog.csdn.net/qianlong4526888/article/details/12062809

 

 

/*

 *  __flush_dcache_all()

*  Flush the wholeD-cache.

 * Corrupted registers: x0-x7, x9-x11

 */

ENTRY(__flush_dcache_all)

//保证之前的访存指令的顺序

    dsb sy           

 

      //读cache level id register

    mrs x0, clidr_el1           // read clidr

 

      //取bits[26:24](Level of Coherency for the cache hierarchy.)

//需要遵循cache一致性的cache层级(例如有3级cache,但2级需要做一致性)

    and x3, x0, #0x7000000      // extract loc from clidr

      //逻辑右移23位,把bits[26:24]放到bits[2:0]

    lsr x3, x3, #23         // left align loc bit field

 

      //如果需要做cache一致性的层级为0,则不需要flush,跳转到finished标记处。

    cbz x3, finished            // if loc is 0, then no need toclean

 

      //x10存放cache级,从level0 cache开始做flush

      //以下三个循环loop3是set/way(x9),

//loop2是index(x7),loop1是cache level(x10)

    mov x10, #0             // start clean at cache level 0

loop1:

//x10+2后右移一位正好等于1,再加上x10本身正好等于3

      //每执行一次loop1,x2+3*执行次数,目的在于把x0(clidr_el1)右移3位,

//取下一个cache的ctype type fields字段,clidr_el1的格式见《ARMv8 ARM》

    add x2, x10, x10, lsr #1        /

      //x0逻辑右移x2位,给x1,提取cache类型放到x1中,x0中存放:clidr_el1

    lsr x1, x0, x2         

 

      //掩掉高位,只取当前cache类型

    and x1, x1, #7 

      /* 判断当前cache是什么类型:

* 000  No cache.

* 001  Instruction cache only.

* 010  Data cache only.

* 011  Separate instruction and data caches.

* 100  Unified cache.

*/

      //小于2说明data cache不存在或者只有icache,

//跳转skip执行,大于等于2继续执行

    cmp x1, #2             

    b.lt   skip               

     

/*

 *  Save/disableand restore interrupts.

 * .macro save_and_disable_irqs, olddaif

 * mrs \olddaif,daif                                                                                                                                                     

 * disable_irq

 * .endm

*/

      //保存daif到x9寄存器中,关闭中断

    save_and_disable_irqs x9        // make CSSELR and CCSIDR access atomic

      //选择当前cache级进行操作,csselr_el1寄存器bit[3:1]选择要操作的cache级

      //第一次执行时x10=0,选择level 0级cache

    msr csselr_el1,x10        

      //isb用于同步新的cssr和csidr寄存器

    isb                

      //因为执行了“msr csselr_el1,x10”,所以要重新读取ccsidr_el1

    mrs x1, ccsidr_el1          // read the new ccsidr

 

    /*

* .macro  restore_irqs, olddaif                                                                                                                                          

     * msrdaif, \olddaif

    . * endm

        */

    restore_irqs x9

      //x1存储ccsidr_el1内容,低三位是(Log2(Number of bytes in cache line)) – 4

      //加4后x2=(Log2(Numberof bytes in cache line))

    and x2, x1, #7          // extract the length of the cachelines

    add x2, x2, #4          // add 4 (line length offset)

    mov x4, #0x3ff

      //逻辑右移3位,提取bits[12:3](Associativityof cache) – 1,

      //x4存储cache的way数

    and x4, x4, x1, lsr #3     // find maximum number on the way size

      //计算x4前面0的个数,存到x5

    clz x5, x4              // find bit position of way sizeincrement

      //提取bits[27:13]位:(Number of sets in cache) - 1

    mov x7, #0x7fff

      //x7中存储cache中的set数

    and x7, x7, x1, lsr #13     // extract max number of the index size

loop2:

      //把x4值备份

    mov x9, x4              // create working copy of max waysize

loop3:

      //把需要操作哪个way存储到x6

    lsl x6, x9, x5

      //确定操作哪一级的哪个way(x10指定操作哪一级cache)

    orr x11, x10, x6            // factor way and cache number intox11

      //确定操作哪个set

    lsl x6, x7, x2

    orr x11, x11, x6            // factor index number into x11

      //x11中存储了哪一级cache(10),哪一路cache(x9),哪个set(x7)

    dc  cisw, x11           // clean & invalidate by set/way

      //way数-1

    subs   x9, x9, #1          // decrementthe way

    b.ge   loop3

    subs   x7, x7, #1          // decrementthe index

    b.ge   loop2

skip:

    add x10, x10, #2            // increment cache number,

//为什么加2不是1?见loop1标号处解释

    cmp x3, x10

    b.gt   loop1

finished:

    mov x10, #0             // swith back to cache level 0

    msr csselr_el1, x10         // select current cache level incsselr

    dsb sy

    isb

    ret

ENDPROC(__flush_dcache_all)

 

 

 如果你对此有疑问,欢迎留言讨论。













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/5896363.html,如需转载请自行联系原作者


相关文章
|
2月前
|
安全 网络协议 Linux
深入理解Linux内核模块:加载机制、参数传递与实战开发
本文深入解析了Linux内核模块的加载机制、参数传递方式及实战开发技巧。内容涵盖模块基础概念、加载与卸载流程、生命周期管理、参数配置方法,并通过“Hello World”模块和字符设备驱动实例,带领读者逐步掌握模块开发技能。同时,介绍了调试手段、常见问题排查、开发规范及高级特性,如内核线程、模块间通信与性能优化策略。适合希望深入理解Linux内核机制、提升系统编程能力的技术人员阅读与实践。
203 1
|
2月前
|
Ubuntu Linux
Ubuntu 23.04 用上 Linux 6.2 内核,预计下放到 22.04 LTS 版本
Linux 6.2 带来了多项内容更新,修复了 AMD 锐龙处理器设备在启用 fTPM 后的运行卡顿问题,还增强了文件系统。
|
2月前
|
Ubuntu Linux
Ubuntu 23.10 现在由Linux内核6.3提供支持
如果你想在你的个人电脑上测试一下Ubuntu 23.10的最新开发快照,你可以从官方下载服务器下载最新的每日构建ISO。然而,请记住,这是一个预发布版本,所以不要在生产机器上使用或安装它。
|
7天前
|
数据管理 Linux iOS开发
Splunk Enterprise 9.4.5 (macOS, Linux, Windows) - 机器数据管理和分析
Splunk Enterprise 9.4.5 (macOS, Linux, Windows) - 机器数据管理和分析
32 0
|
2月前
|
监控 Ubuntu Linux
什么Linux,Linux内核及Linux操作系统
上面只是简单的介绍了一下Linux操作系统的几个核心组件,其实Linux的整体架构要复杂的多。单纯从Linux内核的角度,它要管理CPU、内存、网卡、硬盘和输入输出等设备,因此内核本身分为进程调度,内存管理,虚拟文件系统,网络接口等4个核心子系统。
189 0
|
2月前
|
Web App开发 缓存 Rust
|
2月前
|
Ubuntu 安全 Linux
Ubuntu 发行版更新 Linux 内核,修复 17 个安全漏洞
本地攻击者可以利用上述漏洞,攻击 Ubuntu 22.10、Ubuntu 22.04、Ubuntu 20.04 LTS 发行版,导致拒绝服务(系统崩溃)或执行任意代码。
|
11月前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
378 4
|
11月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
417 24