【原】训练自己的haar-like特征分类器并识别物体(3)

简介:
在前两篇文章中,我介绍了《训练自己的haar-like特征分类器并识别物体》的前三个步骤:

1.准备训练样本图片,包括正例及反例样本

2.生成样本描述文件

3.训练样本

4.目标识别

==============

本文将着重说明最后一个阶段——目标识别,也即利用前面训练出来的分类器文件(.xml文件)对图片中的物体进行识别,并在图中框出在该物体。由于逻辑比较简单,这里直接上代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
int  _tmain( int  argc, _TCHAR* argv[])
{
     char  *cascade_name = CASCADE_HEAD_MY;  //上文最终生成的xml文件命名为"CASCADE_HEAD_MY.xml"
     cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );  //加载xml文件
 
     if ( !cascade )
     {
         fprintf ( stderr,  "ERROR: Could not load classifier cascade\n"  );
         system ( "pause" );
         return  -1;
     }
     storage = cvCreateMemStorage(0);
     cvNamedWindow(  "face" , 1 );
 
     const  char * filename =  "(12).bmp" ;
     IplImage* image = cvLoadImage( filename, 1 );
 
     if ( image )
     {
         detect_and_draw( image );  //函数见下方
         cvWaitKey(0);
         cvReleaseImage( &image );  
     }
     cvDestroyWindow( "result" );
     return  0;
}
  detect_and_draw

本文转自编程小翁博客园博客,原文链接:http://www.cnblogs.com/wengzilin/p/3858957.html,如需转载请自行联系原作者

相关文章
|
5月前
|
机器学习/深度学习 存储 数据可视化
MambaOut:状态空间模型并不适合图像的分类任务
该论文研究了Mamba架构(含状态空间模型SSM)在视觉任务(图像分类、目标检测、语义分割)中的必要性。实验表明,Mamba在这些任务中效果不如传统卷积和注意力模型。论文提出,SSM更适合长序列和自回归任务,而非视觉任务。MambaOut(不带SSM的门控CNN块)在图像分类上优于视觉Mamba,但在检测和分割任务中略逊一筹,暗示SSM在这类任务中可能仍有价值。研究还探讨了Mamba在处理长序列任务时的效率和局部信息整合能力。尽管整体表现一般,但论文为优化不同视觉任务的模型架构提供了新视角。
85 2
ENVI:如何进行遥感图像的分类?(决策树模型)
ENVI:如何进行遥感图像的分类?(决策树模型)
320 0
|
5月前
|
机器学习/深度学习 XML 编解码
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
245 1
|
5月前
|
机器学习/深度学习 文字识别 算法
[Halcon&图像] 基于多层神经网络MLP分类器的思想提取颜色区域
[Halcon&图像] 基于多层神经网络MLP分类器的思想提取颜色区域
127 0
|
机器学习/深度学习 存储 自然语言处理
使用预先训练的扩散模型进行图像合成
使用预先训练的扩散模型进行图像合成
132 1
|
机器学习/深度学习 传感器 算法
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
【图像分割】图像检测(分割、特征提取)、各种特征(面积等)的测量和过滤(Matlab代码实现)
|
算法 数据挖掘 计算机视觉
使用稀疏性(微球)进行色谱图基线估计和去噪(Matlab代码实现)
使用稀疏性(微球)进行色谱图基线估计和去噪(Matlab代码实现)
130 0
|
存储 机器学习/深度学习 编解码
使用训练分类网络预处理多分辨率图像
说明如何准备用于读取和预处理可能不适合内存的多分辨率全玻片图像 (WSI) 的数据存储。肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。 读取和处理WSI数据。这些对象有助于使用多个分辨率级别,并且不需要将图像加载到核心内存中。此示例演示如何使用较低分辨率的图像数据从较精细的级别有效地准备数据。可以使用处理后的数据来训练分类深度学习网络。
223 0
|
机器学习/深度学习 编解码 算法
图像目标分割_4 DeepLab-V1
相比于传统的视觉算法(SIFT或HOG),Deep-CNN以其end-to-end方式获得了很好的效果。这样的成功部分可以归功于Deep-CNN对图像转换的平移不变性(invariance),这根本是源于重复的池化和下采样组合层。平移不变性增强了对数据分层抽象的能力,但同时可能会阻碍低级(low-level)视觉任务,例如姿态估计、语义分割等,在这些任务中我们倾向于精确的定位而不是抽象的空间关系。
102 0
图像目标分割_4 DeepLab-V1
|
机器学习/深度学习 存储 人工智能
用CNN做基础模型,可变形卷积InternImage实现检测分割新纪录!
用CNN做基础模型,可变形卷积InternImage实现检测分割新纪录!
223 0
下一篇
无影云桌面