Flume的Collector

简介:

Collector的作用是将多个Agent的数据汇总后,加载到Storage中。它的source和sink与agent类似。

 

数据源(source),如:

  collectorSource[(port)]:Collector source,监听端口汇聚数据。

  autoCollectorSource:通过master协调物理节点自动汇聚数据。

  logicalSource:逻辑source,由master分配端口并监听rpcSink。

 

sink,如:
collectorSink( “fsdir”,”fsfileprefix”,rollmillis):collectorSink,数据通过collector汇聚之后发送到hdfs, fsdir 是hdfs目录,fsfileprefix为文件前缀码。

  customdfs(“hdfspath”[, "format"]):自定义格式dfs。


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6784963.html,如需转载请自行联系原作者

相关文章
GPT-4 vs. ChatGPT:19个弱项问题(多步逻辑推理、概念间接关联)的横向对比
GPT-4在逻辑推理和概念关联上的准确率提升至100%,超越ChatGPT,其智力可能超过95%的人。在逻辑和多模态理解上有显著进步,但数数和某些逻辑推理仍是挑战。擅长处理成本计算和复杂情境,能建立概念间的间接关联,如遗忘与老龄化的联系。在数学和物理领域表现出色,但处理复杂间接关系和抽象概念时仍有局限。总体而言,GPT-4展现出超越人类智能的潜力,但仍需面对认知任务的挑战。![GPT-4进步示意](https://developer.aliyun.com/profile/oesouji3mdrog/highScore_1?spm=a2c6h.132)查看GPT-5教程,可访问我的个人主页介绍。
403 0
GPT-4 vs. ChatGPT:19个弱项问题(多步逻辑推理、概念间接关联)的横向对比
|
Java Maven Spring
【操作宝典】IntelliJ IDEA新建maven项目详细教程
【操作宝典】IntelliJ IDEA新建maven项目详细教程
834 1
|
API 数据安全/隐私保护 开发者
使用MechanicalSoup进行网页自动化交互
使用MechanicalSoup进行网页自动化交互
166 2
|
安全 测试技术 API
后端开发中的API设计原则与最佳实践
本文将深入探讨在后端开发中API(应用程序编程接口)设计的基本原则和最佳实践。通过阐述如何构建高效、可扩展且安全的API,帮助开发者提升后端系统的性能和用户体验。不同于传统的摘要,本文无需包含背景介绍,直接进入主题,为读者提供实用的指导。
508 7
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
1760 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
|
人工智能 Python
人工智能导论——谓词公式化为子句集详细步骤
在谓词逻辑中,有下述定义: 原子(atom)谓词公式是一个不能再分解的命题。 原子谓词公式及其否定,统称为文字(literal)。$P$称为正文字,$\neg P$称为负文字。$P$与$\neg P$为互补文字。 <font color="ddd0000">任何文字的析取式称为子句(clause)。任何文字本身也是子句。</font> 由子句构成的集合称为子句集。 不包含任何文字的子句称为空子句,表示为NIL。 <font color="ddd0000">由于空子句不含有文字,它不能被任何解释满足,所以,空子句是永假的、不可满足的。</font> 在谓词逻辑中,任何一个谓词公式都可以通过应用等
2331 1
人工智能导论——谓词公式化为子句集详细步骤
|
人工智能 算法 自动驾驶
AI的伦理困境:我们如何应对?
随着人工智能(AI)的发展,其伦理问题也日益凸显。本文将探讨AI的伦理困境,包括数据隐私、算法偏见和AI决策的透明度等问题,并提出可能的解决方案。
|
传感器 安全 Java
RXTX
RXTX
306 1
|
网络架构
IP组播地址
IP组播地址
317 0
|
分布式计算 Hadoop 关系型数据库
Sqoop与Spark的协作:高性能数据处理
Sqoop与Spark的协作:高性能数据处理
Sqoop与Spark的协作:高性能数据处理