SQL Server-简单查询语句,疑惑篇(三)

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
简介:

前言

对于一些原理性文章园中已有大量的文章尤其是关于索引这一块,我也是花费大量时间去学习,对于了解索引原理对于后续理解查询计划和性能调优有很大的帮助,而我们只是一些内容进行概括和总结,这一节我们开始正式步入学习SQL中简单的查询语句,简短的内容,深入的理解,Always to review the basics。

简单查询语句

所有复杂的语句都是由简单的语句组成基本都是由SELECT、FROM、WHERE、GROUP BY、HAVING、ORDER BY等组成,当然还包括一些谓词等等。比如当我们要查询某表中所有数据时我们会像如下进行。

SELECT * FROM TABLE

到这里是不是查询就是从SELECT开始呢?我们应该从实际生活举例,如我们需要到菜市场买菜,我们想买芹菜,我们应该是到有芹菜的摊位上去买,也就是从哪里去买,到这里我们会发现上述查询数据的顺序应该是先FROM然后是SELECT。在SQL 2012基础教程中列出子句是按照以下顺序进行逻辑处理。

复制代码
1    FROM
2    WHERE
3    GROUP BY
4    HAVING
5    SELECT
6    ORDER BY
复制代码

比如我们要查询筛选客户71下的订单,我们会进行如下查询。

复制代码
SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numbers 
FROM Sales.Orders
WHERE custid = '71'
GROUP BY empid, YEAR(orderdate)
HAVING COUNT(*) > 1
ORDER BY empid, orderyear
复制代码

但是实际上按照我们上述所说的顺序,其逻辑化的子句是这样的。

复制代码
FROM Sales.Orders
WHERE custid = 71
GROUP BY empid, YEAR(orderdate)
HAVING COUNT(*) > 1
SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS numberorders
ORDER BY empid, orderyear
复制代码

对于博主的SQL系列并非会将SELECT、HAVING等语句单独拿来讲,针对的是有了一定基础的人群,后续内容也是如此,所以到了这里我们算是将简单查询语句叙述完毕。但是我一直强调的是简短的内容,深入的理解,所以接下来看看有些需要注意的地方。 

我们看到过很多文章一直在讲SQL性能问题,比如在查询所有数据时要列出所有列而非SELECT *,所以在本系列中,我也会在适当的去讲性能问题,比如本节要讲的SELECT 1和SELECT *的性能问题。

SELECT 1和SELECT *性能探讨

在数据库中查看执行计划时我们通常会点击【显示估计的执行计划】快捷键是Ctrl+L,这里我们可以看到它已经表明显示的只是估计的执行计划,所以是不准确的,所以为了显示实际的执行计划,我们应该启动【包括实际的执行计划】,快捷键是Ctrl+M,这样才能得到比较准确的执行计划,如下

查询方式一(整表查询)

复制代码
USE TSQL2012
GO
IF EXISTS(
SELECT 1
FROM Sales.Orders)
SELECT 'SELECT 1'
GO
IF EXISTS(
SELECT *
FROM Sales.Orders)
SELECT 'SELECT *'
GO
复制代码

此时查看执行计划是相同的,如下:

查询方式二(在索引列上条件查找)

我们对某一列创建索引

CREATE INDEX ix_shipname
ON Sales.Orders(shipname)

接下来继续查看其执行计划。

此时显示查询计划依然一样。我们再来看看其他查询方式。

查询方式三(使用聚合函数)

复制代码
USE TSQL2012
GO
IF (
SELECT 1
FROM Sales.Orders
WHERE shipname = 'Ship to 85-B') = 1
SELECT 'SELECT 1'
GO
IF (
SELECT COUNT(*)
FROM Sales.Orders
WHERE shipname = 'Ship to 85-B') = 1
SELECT 'SELECT *'
GO
复制代码

我们看到查询计划依然一样。

查询方式四(使用聚合函数Count在非索引列上查找)

复制代码
USE TSQL2012
GO
IF (
SELECT COUNT(1)
FROM Sales.Orders
WHERE freight = '41.3400') = 1
SELECT 'SELECT 1'
GO
IF (
SELECT COUNT(*)
FROM Sales.Orders
WHERE freight = '41.3400') = 1
SELECT 'SELECT *'
GO
复制代码

我们看到执行计划还是一样。

查询方式五(子查询)

我们看看在子查询中二者性能如何

复制代码
USE TSQL2012
SELECT custid, companyname  FROM Sales.Customers AS C
WHERE country = N'USA' AND
EXISTS (SELECT * FROM Sales.Orders AS O WHERE O.custid = C.custid)
GO

SELECT custid, companyname  FROM Sales.Customers AS C
WHERE country = N'USA' AND
EXISTS (SELECT 1 FROM Sales.Orders AS O WHERE O.custid = C.custid)
复制代码

此时结果二者查看执行计划还是一样

查询方式六(在视图中查询)

我们创建视图继续来比较SELECT 1和SELECT *的性能

复制代码
USE TSQL2012
Go
CREATE VIEW SaleOdersView
AS

SELECT shipaddress,shipname,(SELECT unitprice FROM Sales.OrderDetails AS sod where sod.orderid = so.orderid) as tc3
FROM Sales.Orders AS so

GO
复制代码

进行视图查询

USE TSQL2012
SELECT 1 FROM dbo.SaleOdersView
go
SELECT * FROM dbo.SaleOdersView
go

结果执行计划如下:

此时我们通过上述图发现利用视图查询时,SELECT *的性能是如此低下占有97%,而SELECT 1才3%,这是为何呢?不明白其中原因,希望有清楚其中原因的园友能够留下你们的评论给出合理的解释。

SELECT 所有列和SELECT *性能探讨

一直以来所有教程都在讲SELECT *性能比SELECT 所有列性能低,同时也给出了合理的理由,我也一直这样认为,但是在查资料学习过程中,发现如下一段话。

复制代码
I don’t think there is any difference, as long as the SELECT 1/* is inside EXISTS, which really doesn’t return any rows – it just returns boolean as soon as condition of the WHERE is checked.

I’m quite sure that the SQL Server Query Optimizer is smart enough not to search for the unneeded meta data in the case of EXISTS.

I agree that in all the other situations SELECT * shouldn’t be used for the reasons Simon mentioned. Also, index usage wouldn’t be optimal etc.

For me EXISTS (SELECT * ..) is the only place where I allow myself to write SELECT * in production code ;)
复制代码

最后一句表明SELECT *使用的唯一场景是在EXISTS中,看到这里颠覆我以往看的教程的想法,不太明确,真的是这样吗?

总结

通过以上对SELECT 1和SELECT *性能的探讨,在视图中利用SELECT *性能更加低下,同时也结合SELECT *尽量避免用,我是不是可以下结论我可以更倾向于用SELECT 1呢?第二点是看到上述所给的资料SELECT *在Exist中的性能是不是和一定SELECT 所有列一样呢?这是我存在疑问的两个问题,是不是我所疑问的两个问题,没有具体的答案,需要看应用场景呢?那应用场景又是在哪里?毕竟不是专业的DBA,同时对SQL也研究不深,所以希望看到此文的读者,能给出精彩的回答,同时也让我学习学习。







本文转自Jeffcky博客园博客,原文链接:http://www.cnblogs.com/CreateMyself/p/6107209.html,如需转载请自行联系原作者

相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
目录
相关文章
|
5天前
|
SQL 安全 数据库
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
100 77
|
25天前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过使用 MongoDB Connector for BI 和 JDBC,开发者可以在 Java 中使用 SQL 语法查询 MongoDB 数据库。这种方法对于熟悉 SQL 的团队非常有帮助,能够快速实现对 MongoDB 数据的操作。同时,也需要注意到这种方法的性能和功能限制,根据具体应用场景进行选择和优化。
75 9
|
1月前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
175 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
2月前
|
SQL Java
使用java在未知表字段情况下通过sql查询信息
使用java在未知表字段情况下通过sql查询信息
46 8
|
2月前
|
SQL 安全 PHP
PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全
本文深入探讨了PHP开发中防止SQL注入的方法,包括使用参数化查询、对用户输入进行过滤和验证、使用安全的框架和库等,旨在帮助开发者有效应对SQL注入这一常见安全威胁,保障应用安全。
82 4
|
2月前
|
SQL 监控 关系型数据库
SQL语句当前及历史信息查询-performance schema的使用
本文介绍了如何使用MySQL的Performance Schema来获取SQL语句的当前和历史执行信息。Performance Schema默认在MySQL 8.0中启用,可以通过查询相关表来获取详细的SQL执行信息,包括当前执行的SQL、历史执行记录和统计汇总信息,从而快速定位和解决性能瓶颈。
|
2月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
206 10
|
2月前
|
SQL 关系型数据库 MySQL
|
3月前
|
SQL 数据库 开发者
功能发布-自定义SQL查询
本期主要为大家介绍ClkLog九月上线的新功能-自定义SQL查询。
|
3月前
|
SQL 移动开发 Oracle
SQL语句实现查询连续六天数据的方法与技巧
在数据库查询中,有时需要筛选出符合特定时间连续性条件的数据记录