HDU 5009 Paint Pearls (动态规划)

简介:

Paint Pearls



Problem Description
Lee has a string of n pearls. In the beginning, all the pearls have no color. He plans to color the pearls to make it more fascinating. He drew his ideal pattern of the string on a paper and asks for your help. 

In each operation, he selects some continuous pearls and all these pearls will be painted to  their target colors. When he paints a string which has k different target colors, Lee will cost k 2 points. 

Now, Lee wants to cost as few as possible to get his ideal string. You should tell him the minimal cost.
 

Input
There are multiple test cases. Please process till EOF.

For each test case, the first line contains an integer n(1 ≤ n ≤ 5×10 4), indicating the number of pearls. The second line contains a 1,a 2,...,a n (1 ≤ a i ≤ 10 9) indicating the target color of each pearl.
 

Output
For each test case, output the minimal cost in a line.
 

Sample Input
 
 
3 1 3 3 10 3 4 2 4 4 2 4 3 2 2
 

Sample Output
 
 
2 7
 

Source
 

Recommend
hujie
 


题目大意:

           给定一系列的颜色。能够划分为随意多个随意大小的区间。每一个区间的花费为 区间颜色数的平方,问你总花费最小是多少?


解题思路:

         用动态规划,双向链表事实上就是维护前面不同的元素,同样的元素删除。

        我參照的是:http://blog.csdn.net/u011345136/article/details/39759935

解题代码:

#include <iostream>
#include <map>
#include <cstdio>
using namespace std;

const int maxn=51000;
int n,d[maxn],dp[maxn],pre[maxn],next[maxn];
map <int,int> mp;

//mp 记录数字相应的下标
//pre 记录前驱
//next 记录后继
void solve(){
    mp.clear();
    for(int i=1;i<=n;i++){
        pre[i]=i-1;
        next[i]=i+1;
        dp[i]=(1<<30);
    }
    dp[0]=0;pre[0]=-1;
    for(int i=1;i<=n;i++){
        if(mp.find(d[i])==mp.end()) mp[d[i]]=i;
        else{
            int id=mp[d[i]];
            next[pre[id]]=next[id];
            pre[next[id]]=pre[id];
            mp[d[i]]=i;
        }
        int c=0;
        for(int j=pre[i];j!=-1;j=pre[j]){
            c++;
            dp[i]=min(dp[i],dp[j]+c*c);
            if(c*c>=i) break;
        }
    }
    printf("%d\n",dp[n]);
}

int main(){
    while(scanf("%d",&n)!=EOF){
        for(int i=1;i<=n;i++) scanf("%d",&d[i]);
        solve();
    }
    return 0;
}









本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5095919.html,如需转载请自行联系原作者

相关文章
|
8月前
|
人工智能 Java
HDU-1003- Max Sum (动态规划)
HDU-1003- Max Sum (动态规划)
49 0
hdoj 1028/poj 2704 Pascal's Travels(记忆化搜索||dp)
有个小球,只能向右边或下边滚动,而且它下一步滚动的步数是它在当前点上的数字,如果是0表示进入一个死胡同。求它从左上角到右下角到路径数目。 注意, 题目给了提示了,要用64位的整数。
45 0
|
人工智能
poj 2299 Ultra-QuickSort 求逆序数 树状数组解法
所谓离散化,我们的了解就是对原数组排序,然后用所在位置的下标代替原数,这样我们就可以把数据范围缩小到1-500000,这个数组是开的下的。
60 0
poj 1088 记忆化搜索||动态规划
记忆化搜索也也是采用递归深搜的对数据进行搜索,但不同于直接深搜的方式,记忆化搜索是在每次搜索时将得到的结果保存下来,避免了重复计算,这就是所谓的记忆化。记忆化应该是属于动态规划。
49 0
|
机器学习/深度学习
[LeeCode][动态规划][简单] 杨辉三角
[LeeCode][动态规划][简单] 杨辉三角
69 0
[LeeCode][动态规划][简单]上楼梯
[LeeCode][动态规划][简单]上楼梯
61 0
|
人工智能
【待补】UPC No Need(二分+bitset || 背包dp)
【待补】UPC No Need(二分+bitset || 背包dp)
63 0
|
存储 人工智能 算法
HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29942    Accepted Submissio...
2406 0