Hadoop-No.9之表和Region

简介: 影响性能与数据分布的一个因素是HBase中表的数量以及每个表的Region的数量.如果分配的不合理,集群一个节点活多个节点的负载会出现显著的不均衡.其中比较注意的几点: - 每个节点包含一个Region服务器 - 每个Region服务器包含多个Region - 任何时...

影响性能与数据分布的一个因素是HBase中表的数量以及每个表的Region的数量.如果分配的不合理,集群一个节点活多个节点的负载会出现显著的不均衡.

其中比较注意的几点:
- 每个节点包含一个Region服务器
- 每个Region服务器包含多个Region
- 任何时候,一个给定的Region存在一个特定的Region服务器上
- 表被分成多个Region,而且散步在Region服务器中.一个表至少要包含一个Region

对于一个给定的表,Region的数目可以参考一下两条经验法则进行选择.这两条法则权衡了put请求的性能与Region合并时间

Put操作性能

Region服务器中所有接收到的put请求的Region都会共享Region服务器的memstore.memstore是每个HBase Region服务器都有的一种缓存结构.memstore能缓存发送到Region服务器的写入.并对他们进行排序,知道打到特定的内存值,冲刷写入磁盘.因此,Region服务器中的Region越多,每个Region可用的memstore空间就越少.这可能会导致冲刷变小,较小的冲刷又可能带来更小.更多的HFile和更多较小的合并.由此导致性能降低.默认的配置将理想的冲刷大小设置为100MB,如果确定了memstore的大小并分区,使得每个去为100MB,那么Region服务器就会合理的得到最多数量的Region.

合并时间

Region越大,合并花费的时间就越多.从经验上来说,Region的大小最多为20GB,但是也有一些非常成功的集群,Region的大小可以打到120GB

HBase表分配Region的方式有以下两种

  • 默认情况下,一个表只有一个Region,并随着数据的增加自动分片
  • 创建表是,指定一个Region数量,而且将Region的大小设置为一个足够大的值(比如每个Region 100GB)以避免自动分片

在选择Region分配方式之前.应该确定选择了正确的分片策略.大多数情况下,应当选择ConstantSizeRegionSplitPolicy 或者DisabledRegionSplitPolicy.

建议局限分配Region的数量(即采用第二种方式),这种可以避免分片随机进行,避免自动分片导致范围不理想,影响性能.

还有一些情况应该采用自动分片.比如,一个不断增长的数据集只更新最新的数据,那么它就更适合采用自动分片.如果该表的行键有{Salt}{SeqId}组成,那么些操作可能受到控制,分发到一系列固定的Region上.既然Region自动分片,那么久的Region也就不需要合并了(除非是基于TTL的周期性合并)

目录
相关文章
|
5月前
|
存储 分布式计算 Hadoop
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
Hadoop-33 HBase 初识简介 项目简介 整体架构 HMaster HRegionServer Region
86 2
|
5月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
283 6
|
5月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
127 2
|
3月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
121 4
|
4月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
256 2
|
4月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
228 1
|
5月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
149 1
|
5月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
134 5
|
5月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
61 4
|
5月前
|
大数据 网络安全 数据安全/隐私保护
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
218 5

相关实验场景

更多