spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的SparkPi.scala(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的SparkPi.scala

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
//package org.apache.spark.examples
package zhouls.bigdata.Basic

import scala.math.random
import org.apache.spark._
import org.apache.spark.{SparkContext, SparkConf}  

/** Computes an approximation to pi */
object SparkPi {
  
   /*
   * 主函数:进行圆周率的计算  
   * 自己写的博客:http://www.cnblogs.com/zlslch/p/7454700.html
   */
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("Spark Pi").setMaster("local")
    val spark = new SparkContext(conf)
    
    
    val slices = if (args.length > 0) args(0).toInt else 2//分片数
    val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow  (为避免溢出,n不超过int的最大值  )
    val count = spark.parallelize(1 until n, slices).map { i =>  //计数  
      val x = random * 2 - 1  //小于1的随机数  
      val y = random * 2 - 1   //小于1的随机数  
      if (x*x + y*y < 1) 1 else 0   //点到圆心的的值,小于1计数一次,超出1就不计算  
    }.reduce(_ + _) //汇总累加落入的圆中的次数
    println("Pi is roughly " + 4.0 * count / n) //count / n是概率,count落入圆中次的数,n是总次数
    spark.stop()
  }
}
// scalastyle:on println
复制代码

 

 

 

 

 

复制代码
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/D:/SoftWare/spark-1.6.1-bin-hadoop2.6/lib/spark-assembly-1.6.1-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/D:/SoftWare/spark-1.6.1-bin-hadoop2.6/lib/spark-examples-1.6.1-hadoop2.6.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
17/08/30 18:19:38 INFO SparkContext: Running Spark version 1.6.1
17/08/30 18:19:40 INFO SecurityManager: Changing view acls to: Administrator
17/08/30 18:19:40 INFO SecurityManager: Changing modify acls to: Administrator
17/08/30 18:19:40 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(Administrator); users with modify permissions: Set(Administrator)
17/08/30 18:19:45 INFO Utils: Successfully started service 'sparkDriver' on port 50997.
17/08/30 18:19:46 INFO Slf4jLogger: Slf4jLogger started
17/08/30 18:19:46 INFO Remoting: Starting remoting
17/08/30 18:19:46 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@169.254.28.160:51011]
17/08/30 18:19:46 INFO Utils: Successfully started service 'sparkDriverActorSystem' on port 51011.
17/08/30 18:19:46 INFO SparkEnv: Registering MapOutputTracker
17/08/30 18:19:47 INFO SparkEnv: Registering BlockManagerMaster
17/08/30 18:19:47 INFO DiskBlockManager: Created local directory at C:\Users\Administrator\AppData\Local\Temp\blockmgr-1b45f544-2ff9-4f37-bd89-5550f0f1d613
17/08/30 18:19:47 INFO MemoryStore: MemoryStore started with capacity 1131.0 MB
17/08/30 18:19:47 INFO SparkEnv: Registering OutputCommitCoordinator
17/08/30 18:19:48 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/08/30 18:19:48 INFO SparkUI: Started SparkUI at http://169.254.28.160:4040
17/08/30 18:19:49 INFO Executor: Starting executor ID driver on host localhost
17/08/30 18:19:49 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 51018.
17/08/30 18:19:49 INFO NettyBlockTransferService: Server created on 51018
17/08/30 18:19:49 INFO BlockManagerMaster: Trying to register BlockManager
17/08/30 18:19:49 INFO BlockManagerMasterEndpoint: Registering block manager localhost:51018 with 1131.0 MB RAM, BlockManagerId(driver, localhost, 51018)
17/08/30 18:19:49 INFO BlockManagerMaster: Registered BlockManager
17/08/30 18:19:52 INFO SparkContext: Starting job: reduce at SparkPi.scala:43
17/08/30 18:19:52 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:43) with 2 output partitions
17/08/30 18:19:52 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at SparkPi.scala:43)
17/08/30 18:19:52 INFO DAGScheduler: Parents of final stage: List()
17/08/30 18:19:52 INFO DAGScheduler: Missing parents: List()
17/08/30 18:19:52 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:39), which has no missing parents
17/08/30 18:19:53 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1896.0 B, free 1896.0 B)
17/08/30 18:19:53 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1226.0 B, free 3.0 KB)
17/08/30 18:19:53 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:51018 (size: 1226.0 B, free: 1131.0 MB)
17/08/30 18:19:53 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/08/30 18:19:53 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:39)
17/08/30 18:19:53 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
17/08/30 18:19:53 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, partition 0,PROCESS_LOCAL, 2078 bytes)
17/08/30 18:19:53 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
17/08/30 18:19:53 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1031 bytes result sent to driver
17/08/30 18:19:53 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, partition 1,PROCESS_LOCAL, 2078 bytes)
17/08/30 18:19:53 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
17/08/30 18:19:53 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 385 ms on localhost (1/2)
17/08/30 18:19:53 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 1031 bytes result sent to driver
17/08/30 18:19:53 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 163 ms on localhost (2/2)
17/08/30 18:19:53 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:43) finished in 0.564 s
17/08/30 18:19:53 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
17/08/30 18:19:54 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:43, took 1.584352 s
Pi is roughly 3.13592
17/08/30 18:19:54 INFO SparkUI: Stopped Spark web UI at http://169.254.28.160:4040
17/08/30 18:19:54 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
17/08/30 18:19:54 INFO MemoryStore: MemoryStore cleared
17/08/30 18:19:54 INFO BlockManager: BlockManager stopped
17/08/30 18:19:54 INFO BlockManagerMaster: BlockManagerMaster stopped
17/08/30 18:19:54 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
17/08/30 18:19:54 INFO SparkContext: Successfully stopped SparkContext
17/08/30 18:19:54 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
17/08/30 18:19:54 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
17/08/30 18:19:54 INFO ShutdownHookManager: Shutdown hook called
17/08/30 18:19:54 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-3eb1c92a-7733-44d7-9b73-3c78355daf21
复制代码

 

 

 

 

 

 

 

 

 

 

spark-2.2.0-bin-hadoop2.6里Basic包下的SparkPi.scala

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
//package org.apache.spark.examples
package zhouls.bigdata.Basic
 

import scala.math.random
import org.apache.spark.sql.SparkSession //在 Spark 2.0中我们引入了一个新的切入点(entry point):SparkSession
  //在Spark的早期版本,sparkContext是进入Spark的切入点。
  //SparkSession实质上是SQLContext和HiveContext的组合(未来可能还会加上StreamingContext),所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。


/** Computes an approximation to pi */
object SparkPi {
  
  /*
   * 主函数:进行圆周率的计算  
   * 自己写的博客:http://www.cnblogs.com/zlslch/p/7454700.html
   */
  def main(args: Array[String]) {
    
    /*
     * 下面代码片段是如何创建SparkSession
     */
    val spark = SparkSession
      .builder
      .master("local")
      .appName("Spark Pi")
      .getOrCreate()
      
      
    val slices = if (args.length > 0) args(0).toInt else 2 //分片数
    val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow  (为避免溢出,n不超过int的最大值  )
    val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>      //计数  
      val x = random * 2 - 1         //小于1的随机数  
      val y = random * 2 - 1        //小于1的随机数  
      if (x*x + y*y <= 1) 1 else 0       //点到圆心的的值,小于1计数一次,超出1就不计算  
    }.reduce(_ + _) //汇总累加落入的圆中的次数
    println("Pi is roughly " + 4.0 * count / (n - 1)) //count / n是概率,count落入圆中次的数,n是总次数
    spark.stop()
  }
}
// scalastyle:on println
复制代码

 

 

 

 

 

 

 

复制代码
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/08/30 18:04:58 INFO SparkContext: Running Spark version 2.2.0
17/08/30 18:04:59 INFO SparkContext: Submitted application: Spark Pi
17/08/30 18:04:59 INFO SecurityManager: Changing view acls to: Administrator
17/08/30 18:04:59 INFO SecurityManager: Changing modify acls to: Administrator
17/08/30 18:04:59 INFO SecurityManager: Changing view acls groups to: 
17/08/30 18:04:59 INFO SecurityManager: Changing modify acls groups to: 
17/08/30 18:04:59 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(Administrator); groups with view permissions: Set(); users  with modify permissions: Set(Administrator); groups with modify permissions: Set()
17/08/30 18:05:01 INFO Utils: Successfully started service 'sparkDriver' on port 50715.
17/08/30 18:05:01 INFO SparkEnv: Registering MapOutputTracker
17/08/30 18:05:01 INFO SparkEnv: Registering BlockManagerMaster
17/08/30 18:05:01 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/08/30 18:05:01 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/08/30 18:05:01 INFO DiskBlockManager: Created local directory at C:\Users\Administrator\AppData\Local\Temp\blockmgr-14ee4a48-aeba-4509-8163-ed12fae0aa1a
17/08/30 18:05:01 INFO MemoryStore: MemoryStore started with capacity 904.8 MB
17/08/30 18:05:02 INFO SparkEnv: Registering OutputCommitCoordinator
17/08/30 18:05:02 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/08/30 18:05:03 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://169.254.28.160:4040
17/08/30 18:05:03 INFO Executor: Starting executor ID driver on host localhost
17/08/30 18:05:03 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 50725.
17/08/30 18:05:03 INFO NettyBlockTransferService: Server created on 169.254.28.160:50725
17/08/30 18:05:03 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/08/30 18:05:03 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 169.254.28.160, 50725, None)
17/08/30 18:05:03 INFO BlockManagerMasterEndpoint: Registering block manager 169.254.28.160:50725 with 904.8 MB RAM, BlockManagerId(driver, 169.254.28.160, 50725, None)
17/08/30 18:05:03 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 169.254.28.160, 50725, None)
17/08/30 18:05:03 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 169.254.28.160, 50725, None)
17/08/30 18:05:04 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('file:/D:/Code/EclipsePaperCode/Spark220BinHadoop26ShouDongScala/spark-warehouse/').
17/08/30 18:05:04 INFO SharedState: Warehouse path is 'file:/D:/Code/EclipsePaperCode/Spark220BinHadoop26ShouDongScala/spark-warehouse/'.
17/08/30 18:05:05 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
17/08/30 18:05:06 INFO SparkContext: Starting job: reduce at SparkPi.scala:53
17/08/30 18:05:06 INFO DAGScheduler: Got job 0 (reduce at SparkPi.scala:53) with 2 output partitions
17/08/30 18:05:06 INFO DAGScheduler: Final stage: ResultStage 0 (reduce at SparkPi.scala:53)
17/08/30 18:05:06 INFO DAGScheduler: Parents of final stage: List()
17/08/30 18:05:06 INFO DAGScheduler: Missing parents: List()
17/08/30 18:05:06 INFO DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:49), which has no missing parents
17/08/30 18:05:06 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 1816.0 B, free 904.8 MB)
17/08/30 18:05:06 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1182.0 B, free 904.8 MB)
17/08/30 18:05:06 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on 169.254.28.160:50725 (size: 1182.0 B, free: 904.8 MB)
17/08/30 18:05:06 INFO SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:1006
17/08/30 18:05:06 INFO DAGScheduler: Submitting 2 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at SparkPi.scala:49) (first 15 tasks are for partitions Vector(0, 1))
17/08/30 18:05:06 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
17/08/30 18:05:06 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, executor driver, partition 0, PROCESS_LOCAL, 4825 bytes)
17/08/30 18:05:06 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
17/08/30 18:05:06 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 824 bytes result sent to driver
17/08/30 18:05:06 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, executor driver, partition 1, PROCESS_LOCAL, 4825 bytes)
17/08/30 18:05:06 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
17/08/30 18:05:06 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 232 ms on localhost (executor driver) (1/2)
17/08/30 18:05:06 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 781 bytes result sent to driver
17/08/30 18:05:06 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 52 ms on localhost (executor driver) (2/2)
17/08/30 18:05:06 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
17/08/30 18:05:06 INFO DAGScheduler: ResultStage 0 (reduce at SparkPi.scala:53) finished in 0.279 s
17/08/30 18:05:07 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.scala:53, took 0.798087 s
Pi is roughly 3.144035720178601
17/08/30 18:05:07 INFO SparkUI: Stopped Spark web UI at http://169.254.28.160:4040
17/08/30 18:05:07 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
17/08/30 18:05:07 INFO MemoryStore: MemoryStore cleared
17/08/30 18:05:07 INFO BlockManager: BlockManager stopped
17/08/30 18:05:07 INFO BlockManagerMaster: BlockManagerMaster stopped
17/08/30 18:05:07 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
17/08/30 18:05:07 INFO SparkContext: Successfully stopped SparkContext
17/08/30 18:05:07 INFO ShutdownHookManager: Shutdown hook called
17/08/30 18:05:07 INFO ShutdownHookManager: Deleting directory C:\Users\Administrator\AppData\Local\Temp\spark-8fa7e9af-5f1c-468a-9583-4d4fb4490449


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7454700.html,如需转载请自行联系原作者
相关文章
|
1月前
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
49 5
|
29天前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
48 3
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
38 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
75 0
|
7天前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
36 3
|
9天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
24 2
|
10天前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
10 2
|
1月前
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
18 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
15天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
13 1
下一篇
无影云桌面