教你从头到尾利用DQN自动玩flappy bird(全程命令提示,GPU+CPU版)【转】

简介:

转自:http://blog.csdn.net/v_JULY_v/article/details/52810219?locationNum=3&fps=1

目录(?)[-]

  1.     教你从头到尾利用DQN自动玩flappy bird全程命令提示GPUCPU
  2. 前言
  3. 第一部分GPU版教程
  4. 1NVIDIA驱动CUDAcudnn安装
  5. 下载相应文件后续 使用下载地址  
    1. 11 Install NVIDIA Driver 安装NVIDIA驱动
    2. 12 Install CUDA 安装CUDA
    3. 13 Install cuDNN 安装cuDNN
  6. 2源码安装Tensorflow
    1. 21 Install Bazel   安装Bazel
    2. 22 Install other dependencies   安装其他依赖
    3. 23 Create the pip package and install    创建pip包并且安装
    4. 24 Setting up TensorFlow for Development    编译设置Tensorflow
    5. 25 Train your first TensorFlow neural net model    测试Tensorflow
  7. 3安装OpenCV
  8. 4下载FlappyBird
  9. 5 安装pygame
  10. 6GPU版的执行程序
  11. 第二部分CPU版教程
  12. 1 安装Tensorflow
    1. 11 Install Bazel   安装Bazel
    2. 13 Create the pip package and install    创建pip包并且安装
    3. 14 Setting up TensorFlow for Development    编译设置Tensorflow
  13. 2安装OpenCV
  14. 3 下载FlappyBird
  15. 4 安装pygame
  16. 6CPU版的执行程序
  17. 参考文献
  18. 后记

    教你从头到尾利用DQN自动玩flappy bird(全程命令提示,GPU+CPU)

 

 

作者:骁哲、李伟、July
说明:本文分两部分,第一部分为GPU版教程,第二部分为CPU版教程,两个教程都主要由骁哲编写,李伟校对,而最后跑的是yenchenlin的github开源demo。如遇问题欢迎加Q群交流:472899334。且若探究实验背后原理,请参看此课程:11月深度学习班
时间:二零一六年十月十三日。

 

 

前言

    我们在上一篇教程《基于torch学汪峰写歌词、聊天机器人、图像着色/生成、看图说话、字幕生成》中说到:“让每一个人都能玩一把,无限降低初学朋友的实验门槛”,那是否能把难度再次降低呢,比如部分同学不熟悉Linux命令咋整,那是不是不熟悉linux命令就没法折腾了?然既然是为了让每个人都能玩一把,那就应该尽最大可能照顾到最大多数。

    本教程提供全程命令提示,以便让Linux命令暂不熟的同学也能搭建起来。因此,自动玩转flappy bird分三个步骤:

  1. 不管三七二十一,先把游戏搭建起来
  2. 搭建起来后,Linux命令后续慢慢熟悉,熟悉后,一通百通,搭建其他实验的环境也会立马顺畅许多
  3. 取得成就感和安心之后,再细细深究实验背后之原理(当然,10月机器学习算法班上也会深究实验背后原理)

   另本教程省略了ubuntu14.04安装,如果此前没安装过Ubuntu,可以参看《教你从头到尾利用DL学梵高作画》里的第4.1部分。且,本文本一开始只有GPU版的教程,但为照顾到没有GPU的同学,特地在本文第二部分增加CPU版的教程,以让每一个人都能玩。

   还是这个事,欢迎更多朋友跟我们一起做实验,一起玩。包括本flappy bird在内的8个实验:梵高作画、文字生成、自动聊天机器人、图像着色、图像生成、看图说话、字幕生成、flappy bird,今2016年内做出这8个实验中的任意一个并在微博上AT@研究者July,便送100上课券,把实验心得发社区 ask.julyed.com 后,再送100上课券。

 

 

 

第一部分、GPU版教程

1.1NVIDIA驱动、CUDAcudnn安装

下载相应文件,后续 使用,下载地址 : 

以下操作均使用root账户 

apt-get update (更新源)

apt-get install vim (安装VIM,也可使用 emacs nano

vi /etc/default/grub (进入grub文件)

启用字符界面登录

将这行     GRUB_CMDLINE_LINUX_DEFAULT="quiet"  中的 quiet 修改为 text

GRUB_CMDLINE_LINUX_DEFAULT="text"

保存退出

update-grub2 (更新一下)

reboot (重启)

1.1.1、 Install NVIDIA Driver 安装NVIDIA驱动

  cd /**/**/** (cdcuda所在文件目录下)    

  ./NVIDIA-Linux-x86_64-367.44.run   (安装NVIDIA驱动,此文件需执行权限,chmod +x NVIDIA-Linux-x86_64-367.44.run

  reboot  (重启)

1.1.2、 Install CUDA 安装CUDA

  cd /**/**/** (cdcuda所在文件目录下)

  ./cuda_8.0.27_linux.run  (安装CUDA,此文件需执行权限,如遇权限问题 可执行  chmod +x 文件名

  !accept之后第一个选项填写“n”(该选项让你选择是否安装NVIDIADriver,之前已经安装过了,  所以不需要),之后一路“绿灯”。

vi /etc/default/grub    (打开grub

启用图形界面登录

将这行     GRUB_CMDLINE_LINUX_DEFAULT="text"  中的 text修改为 quiet

保存退出

update-grub2 (更新一下)

reboot (重启)

1.1.3、 Install cuDNN 安装cuDNN

  tar xvzf cudnn-7.5-linux-x64-v5.1-ga.tgz   (解压)

 

CUDNN解压,将解压出来的文件复制到 CUDA 目录 如下

  sudo cp cuda/include/cudnn.h /usr/local/cuda/include  (复制)

  sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64   (复制)

  sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*   (加权限)

CUDA Environment Path    添加CUDA的环境变量

终端中执行

  export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"

  export CUDA_HOME=/usr/local/cuda

  export PATH=" C U D A H O M E / b i n : PATH"  

 

 

1.2、源码安装Tensorflow

apt-get install Git  

Clone the TensorFlow repository    克隆Tensorflow

  git clone https://github.com/tensorflow/tensorflow

1.2.1、 Install Bazel   安装Bazel

Install JDK 8   安装JDK8

  sudo add-apt-repository ppa:webupd8team/Java   (添加源)

  sudo apt-get update   (更新)

  sudo apt-get install Oracle-java8-installer   (安装)

 Add Bazel distribution URI as a package source (one time setup) (将BazelURL添加为源)

  echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list  

  curl https://bazel.io/bazel-release.pub.gpg | sudo apt-key add -

Update and install Bazel  更新并下载Bazel

  sudo apt-get update && sudo apt-get install bazel

  sudo apt-get upgrade bazel

1.2.2、 Install other dependencies   安装其他依赖

  sudo apt-get install Python-numpy swig python-dev python-wheel python-pip

Configure the installation  配置 (这里注意configure后面的提示,提示已经给出)

  ./configure(在 clone 下来的 tensorflow目录执行)

Please specify the location of python. [Default is /usr/bin/python]:

Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] N

No Google Cloud Platform support will be enabled for TensorFlow

Do you wish to build TensorFlow with GPU support? [y/N] y

GPU support will be enabled for TensorFlow

Please specify which gcc nvcc should use as the host compiler. [Default is /usr/bin/gcc]:

Please specify the Cuda SDK version you want to use, e.g. 7.0. [Leave empty to use system default]: 8.0  (此处根据实际情况修改)

Please specify the location where CUDA 7.5 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:

Please specify the cuDNN version you want to use. [Leave empty to use system default]: 5  (此处根据实际情况修改)

Please specify the location where cuDNN 5 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:

Please specify a list of comma-separated Cuda compute capabilities you want to build with.

You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.

Please note that each additional compute capability significantly increases your build time and binary size.

[Default is: "3.5,5.2"]:3.0(这个值视机器配置而定,配置越高值越高,参考  https://developer.nvidia.com/cuda-gpus#collapse4,而3.0通用)

Setting up Cuda include

Setting up Cuda lib

Setting up Cuda bin

Setting up Cuda nvvm

Setting up CUPTI include

Setting up CUPTI lib64

Configuration finished

1.2.3、 Create the pip package and install    创建pip包并且安装

  bazel build -c opt //tensorflow/tools/pip_package:build_pip_package  (笔者用公司网提示error,FQ后问题解决)

  bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

  bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg(笔者安装过程中出现ImportErrorNo module named setuptools,解决办法:apt-get install python-pip,安装python-pip就行了)

  sudo pip install /tmp/tensorflow_pkg/tensorflow-0.11.0rc0-py2-none-any.whl

1.2.4、 Setting up TensorFlow for Development    编译设置Tensorflow

  bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

  bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

  mkdir _python_build

  cd _python_build

  ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/* .

  ln -s ../tensorflow/tools/pip_package/* .

  python setup.py develop

1.2.5、 Train your first TensorFlow neural net model    测试Tensorflow

  cd tensorflow/models/image/mnist

  export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"

  export CUDA_HOME=/usr/local/cuda (这里重新添加环境变量是因为笔者安装过程中提示未能找到CUDA

  python convolutional.py(笔者这里出现AttributeErrortype object 'NewBase' has no attribute 'is_abstract'问题,解决办法:sudo pip install six --upgrade -- target="/usr/lib/python2.7/dist-packages"

 

 

1.3、安装OpenCV

Download OpenCV    下载opencv

  浏览器打开  http://opencv.org/

  右侧下载Linux版本的OpenCV

  cd到下载目录

  unzip opencv-2.4.13.zip

  cd opencv-2.4.13

  mkdir release  

  sudo apt-get install build-essential cmake libgtk2.0-dev pkg-config python-dev python-numpy libavcodec-dev libavformat-dev libswscale-dev  

  cd release  

  cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..  

  sudo make install  

 

 

1.4、下载FlappyBird

Download DeepLearningFlappyBird     下载FlappyBird

  git clone --recursive https://github.com/yenchenlin/DeepLearningFlappyBird

 

 

1.5、 安装pygame

  Install  pygame    安装pygame

  wget http://www.pygame.org/ftp/pygame-1.9.1release.tar.gz   下载pygame

  sudo apt-get install libsdl1.2-dev      (SDL安装)

  sudo apt-get install libsdl-image1.2-dev libsdl-mixer1.2-dev libsdl-ttf2.0-dev libsdl-gfx1.2-dev libsdl-net1.2-dev libsdl-sge-dev libsdl-sound1.2-dev libportmidi-dev libsmpeg-dev   (安装其他依赖包)

  cd pygame-1.9.1release

  python config.py

run deep_q_network.py

  python  deep_q_network.py        运行deep_q_network.py  (笔者这里报错:AttributeError:'module' object has no attribute 'stack',解决办法:sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose)

git clone git://github.com/numpy/numpy.git numpy  (笔者这里运行了一下cd numpypython setup.py install,发现报错缺少cython于是执行后面的命令:apt-get install cython)

cd numpy

python setup.py install

 

 

 

1.6、GPU版的执行程序

    全部安装完后,再次执行

  python  deep_q_network.py

    画面卡住等待一下,GPUCUDA在运行需要时间..

    稍等片刻,奇迹出现了,飞鸟开始自动飞、自动上下跳跃、自动穿过障碍,要知道纯人工手动玩很难坚持9s!


    静态图片可能看不出啥效果,视频见这:http://weibo.com/1580904460/EcxQh6em0

    至此,这个曾虐遍全球无数人的游戏,就这样在我们手里,利用深度学习自动玩转了!无不体现深度学习的神奇与魅力。

 


第二部分、CPU版教程

有GPU则按照上述第一部分来,那没GPU咋办呢?没GPU有CPU也能跑。

以下操作均使用root账户

2.1、 安装Tensorflow

源码安装方式

Clone the TensorFlow repository    克隆Tensorflow

  git clone https://github.com/tensorflow/tensorflow

2.1.1、 Install Bazel   安装Bazel

Install JDK 8   安装JDK8

  sudo add-apt-repository ppa:webupd8team/java   (添加源)

  sudo apt-get update   (更新)

  sudo apt-get install oracle-java8-installer   (安装)

 Add Bazel distribution URI as a package source (one time setup) (将BazelURL添加为源)

  echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list  

  curl https://bazel.io/bazel-release.pub.gpg | sudo apt-key add -

Update and install Bazel  更新并下载Bazel

  sudo apt-get update && sudo apt-get install bazel

  sudo apt-get upgrade bazel

2.1.2、 Install other dependencies   安装其他依赖

  sudo apt-get install python-numpy swig python-dev python-wheel python-pip

 

Configure the installation  配置 (这里注意configure后面的提示,提示已经给出)

  ./configure    [在 clone 下来的 tensorflow

目录执行]

标注颜色的字体  需要手动输入

Please specify the location of python. [Default is /usr/bin/python]:

Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] N

No Google Cloud Platform support will be enabled for TensorFlow

Do you wish to build TensorFlow with GPU support? [y/N] N

Configuration finished

2.1.3、 Create the pip package and install    创建pip包并且安装

  bazel build -c opt //tensorflow/tools/pip_package:build_pip_package  (笔者用公司网提示error,FQ后问题解决)

  bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package

  bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg(笔者安装过程中出现ImportErrorNo module named setuptools,解决办法:apt-get install python-pip,安装python-pip就行了。)

  sudo pip install /…/…/tensorflow-0.11.0rc0-py27-none-any.whl  

上述tensorflow...whl文件 下载地址  https://github.com/tensorflow/tensorflow#installation 

 选择 Linux_CPU-only中的对应版本

2.1.4、 Setting up TensorFlow for Development    编译设置Tensorflow

  bazel build -c opt //tensorflow/tools/pip_package:build_pip_package

  mkdir _python_build

  cd _python_build

  ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/* .

  ln -s ../tensorflow/tools/pip_package/* .

  python setup.py develop

2.1.5、 Train your first TensorFlow neural net model    测试Tensorflow

  cd tensorflow/models/image/mnist

  python convolutional.py(笔者这里出现AttributeErrortype object 'NewBase' has no attribute 'is_abstract'问题,解决办法:sudo pip install six --upgrade -- 

target="/usr/lib/python2.7/dist-packages"

 

 

2.2、安装OpenCV

Download OpenCV    下载OpenCV

  浏览器打开  http://opencv.org/

  右侧下载Linux版本的OpenCV

  cd到下载目录

  unzip opencv-2.4.13.zip

  cd opencv-2.4.13

  mkdir release  

  sudo apt-get install build-essential cmake libgtk2.0-dev pkg-config python-dev python-numpy libavcodec-dev libavformat-dev libswscale-dev  

  cd release  

  cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..  

  sudo make install  

 

 

2.3、 下载FlappyBird

Download DeepLearningFlappyBird     下载FlappyBird

  git clone --recursive https://github.com/yenchenlin/DeepLearningFlappyBird

 

 

2.4、 安装pygame

  Install  pygame    安装pygame

  wget http://www.pygame.org/ftp/pygame-1.9.1release.tar.gz   下载pygame

  sudo apt-get install libsdl1.2-dev      (SDL安装)

  sudo apt-get install libsdl-image1.2-dev libsdl-mixer1.2-dev libsdl-ttf2.0-dev libsdl-gfx1.2-dev libsdl-net1.2-dev libsdl-sge-dev libsdl-sound1.2-dev libportmidi-dev libsmpeg-dev   (安装其他依赖包)

  cd pygame-1.9.1release

  python config.py

run deep_q_network.py

  python  deep_q_network.py        运行deep_q_network.py  (笔者这里报错:AttributeError:'module' object has no attribute 'stack',解决办法:

sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas  

python-sympy python-nose

git clone git://github.com/numpy/numpy.git numpy  (笔者这里运行了一下cd numpypython setup.py install,发现报 

错缺少cython于是执行后面的命令)

apt-get install cython

cd numpy

 

python setup.py install

 

 

2.6、CPU版的执行程序

 全部安装完后,再次执行

  python  deep_q_network.py

画面不会卡顿,cpu版本会立刻出现结果(笔者这里第一次时候没有执行root,会报错,同学们切记执行上条命令前一定要root!

PS:按照FlappyBird安装教程安装,可以直接应用在”学梵高作画”的教程里,两者可以通用!


参考文献

  1. 教你从头到尾利用DL学梵高作画:GTX 1070 cuda 8.0 tensorflow gpu版
  2. 5月深度学习班学员小蔡同学写的简易教程:用MAC DQN玩Flappy Bird
  3. https://github.com/yenchenlin/DeepLearningFlappyBird

 

 

后记

    七月在线开发/市场团队,二零一六年十月十三日。








本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/7121543.html,如需转载请自行联系原作者



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
27天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
2月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
140 0
|
23天前
|
缓存 监控 Linux
|
2月前
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
2月前
|
机器学习/深度学习 人工智能 缓存
GPU加速和CPU有什么不同
【10月更文挑战第20天】GPU加速和CPU有什么不同
53 1
|
3月前
|
人工智能 自然语言处理 文字识别
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
在7月4日举行的WAIC 2024科学前沿主论坛上,书生·浦语2.5正式发布,面向大模型研发与应用的全链条工具体系同时迎来升级。
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
|
4月前
|
机器学习/深度学习 人工智能 并行计算
【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述
在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的应用场景中发挥着重要作用
226 2
|
4月前
|
机器学习/深度学习 编解码 人工智能
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
随着人工智能、大数据和深度学习等领域的快速发展,GPU服务器的需求日益增长。阿里云的GPU服务器凭借强大的计算能力和灵活的资源配置,成为众多用户的首选。很多用户比较关心gpu云服务器的收费标准与活动价格情况,目前计算型gn6v实例云服务器一周价格为2138.27元/1周起,月付价格为3830.00元/1个月起;计算型gn7i实例云服务器一周价格为1793.30元/1周起,月付价格为3213.99元/1个月起;计算型 gn6i实例云服务器一周价格为942.11元/1周起,月付价格为1694.00元/1个月起。本文为大家整理汇总了gpu云服务器的最新收费标准与活动价格情况,以供参考。
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
|
13天前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
18天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。