spark-2.2.0-bin-hadoop2.6和spark-1.6.1-bin-hadoop2.6发行包自带案例全面详解(java、python、r和scala)之Basic包下的JavaTC.java(图文详解)

简介:

spark-1.6.1-bin-hadoop2.6里Basic包下的JavaTC.java

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;

import scala.Tuple2;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;

/**
 * Transitive closure on a graph, implemented in Java.
 * Usage: JavaTC [slices]
 */
public final class JavaTC {

  private static final int numEdges = 200;
  private static final int numVertices = 100;
  private static final Random rand = new Random(42);

  static List<Tuple2<Integer, Integer>> generateGraph() {
    Set<Tuple2<Integer, Integer>> edges = new HashSet<Tuple2<Integer, Integer>>(numEdges);
    while (edges.size() < numEdges) {
      int from = rand.nextInt(numVertices);
      int to = rand.nextInt(numVertices);
      Tuple2<Integer, Integer> e = new Tuple2<Integer, Integer>(from, to);
      if (from != to) {
        edges.add(e);
      }
    }
    return new ArrayList<Tuple2<Integer, Integer>>(edges);
  }

  static class ProjectFn implements PairFunction<Tuple2<Integer, Tuple2<Integer, Integer>>,
      Integer, Integer> {
    static final ProjectFn INSTANCE = new ProjectFn();

    @Override
    public Tuple2<Integer, Integer> call(Tuple2<Integer, Tuple2<Integer, Integer>> triple) {
      return new Tuple2<Integer, Integer>(triple._2()._2(), triple._2()._1());
    }
  }

  public static void main(String[] args) {
    SparkConf sparkConf = new SparkConf().setAppName("JavaHdfsLR").setMaster("local"); 
    JavaSparkContext sc = new JavaSparkContext(sparkConf);
    Integer slices = (args.length > 0) ? Integer.parseInt(args[0]): 2;
    JavaPairRDD<Integer, Integer> tc = sc.parallelizePairs(generateGraph(), slices).cache();

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    JavaPairRDD<Integer, Integer> edges = tc.mapToPair(
      new PairFunction<Tuple2<Integer, Integer>, Integer, Integer>() {
        @Override
        public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> e) {
          return new Tuple2<Integer, Integer>(e._2(), e._1());
        }
    });

    long oldCount;
    long nextCount = tc.count();
    do {
      oldCount = nextCount;
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).mapToPair(ProjectFn.INSTANCE)).distinct().cache();
      nextCount = tc.count();
    } while (nextCount != oldCount);

    System.out.println("TC has " + tc.count() + " edges.");
    sc.stop();
  }
}
复制代码

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

spark-2.2.0-bin-hadoop2.6里Basic包下的JavaTC.java

 

 

 

复制代码
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//package org.apache.spark.examples;
package zhouls.bigdata.Basic;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;

import scala.Tuple2;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.sql.SparkSession;

/**
 * Transitive closure on a graph, implemented in Java.
 * Usage: JavaTC [partitions]
 */
public final class JavaTC {

  private static final int numEdges = 200;
  private static final int numVertices = 100;
  private static final Random rand = new Random(42);

  static List<Tuple2<Integer, Integer>> generateGraph() {
    Set<Tuple2<Integer, Integer>> edges = new HashSet<>(numEdges);
    while (edges.size() < numEdges) {
      int from = rand.nextInt(numVertices);
      int to = rand.nextInt(numVertices);
      Tuple2<Integer, Integer> e = new Tuple2<>(from, to);
      if (from != to) {
        edges.add(e);
      }
    }
    return new ArrayList<>(edges);
  }

  static class ProjectFn implements PairFunction<Tuple2<Integer, Tuple2<Integer, Integer>>,
      Integer, Integer> {
    static final ProjectFn INSTANCE = new ProjectFn();

    @Override
    public Tuple2<Integer, Integer> call(Tuple2<Integer, Tuple2<Integer, Integer>> triple) {
      return new Tuple2<>(triple._2()._2(), triple._2()._1());
    }
  }

  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .master("local")  
      .appName("JavaTC")
      .getOrCreate();

    JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext());

    Integer slices = (args.length > 0) ? Integer.parseInt(args[0]): 2;
    JavaPairRDD<Integer, Integer> tc = jsc.parallelizePairs(generateGraph(), slices).cache();

    // Linear transitive closure: each round grows paths by one edge,
    // by joining the graph's edges with the already-discovered paths.
    // e.g. join the path (y, z) from the TC with the edge (x, y) from
    // the graph to obtain the path (x, z).

    // Because join() joins on keys, the edges are stored in reversed order.
    JavaPairRDD<Integer, Integer> edges = tc.mapToPair(e -> new Tuple2<>(e._2(), e._1()));

    long oldCount;
    long nextCount = tc.count();
    do {
      oldCount = nextCount;
      // Perform the join, obtaining an RDD of (y, (z, x)) pairs,
      // then project the result to obtain the new (x, z) paths.
      tc = tc.union(tc.join(edges).mapToPair(ProjectFn.INSTANCE)).distinct().cache();
      nextCount = tc.count();
    } while (nextCount != oldCount);

    System.out.println("TC has " + tc.count() + " edges.");
    spark.stop();
  }
}


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/7457771.html,如需转载请自行联系原作者
相关文章
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
3月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
251 0
|
5月前
|
数据采集 存储 NoSQL
Python爬虫案例:Scrapy+XPath解析当当网网页结构
Python爬虫案例:Scrapy+XPath解析当当网网页结构
|
6月前
|
数据可视化 算法 数据挖掘
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
227 0
Python 3D数据可视化:7个实用案例助你快速上手
|
9月前
|
搜索推荐 算法 程序员
6个案例15分钟让你了解Python套路
Python以其简洁易读的语法,成为编程初学者的首选。本文通过7个经典代码案例,带你快速了解Python编程的核心概念和常用技巧: 1. **九九乘法口诀**:使用嵌套循环打印乘法表。 2. **列表求和**:展示两种方法(for循环和内置函数sum())计算列表元素之和。 3. **素数判断**:编写函数判断一个数是否为素数。 4. **斐波那契数列**:生成指定长度的斐波那契数列。 5. **冒泡排序**:实现简单的冒泡排序算法。 6. **汉诺塔问题**:通过递归解决经典的汉诺塔问题。 这些案例不仅展示了Python的基础语法,更体现了编程思维的重要性,帮助初学者逐步掌握编程套路。
226 2
|
iOS开发 MacOS Python
Python 编程案例:谁没交论文?输出并生成电子表格
Python 编程案例:谁没交论文?输出并生成电子表格
177 9
|
分布式计算 NoSQL Java
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码
203 2
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
305 2
|
数据采集 自然语言处理 API
Python反爬案例——验证码的识别
Python反爬案例——验证码的识别
389 2
|
IDE 开发工具 iOS开发
Python编程案例:查找指定文件大小的文件并输出路径
Python编程案例:查找指定文件大小的文件并输出路径
324 3

推荐镜像

更多