记得在刚找工作时,隔壁的一位同学在面试时豪言壮语曾实现过网络爬虫,当时的景仰之情犹如滔滔江水连绵不绝。后来,在做图片搜索时,需要大量的测试图片, 因此萌生了从Amazon中爬取图书封面图片的想法,从网上也吸取了一些前人的经验,实现了一个简单但足够用的爬虫系统。
网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成,其基本架构如下图所示:

传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。对于垂直搜索来说,聚焦爬虫,即有针对性地爬取特定主题网页的爬虫,更为适合。
本文爬虫程序的核心代码如下:
Java代码
- public void crawl() throws Throwable {
-
while (continueCrawling()) {
-
CrawlerUrl url = getNextUrl();
-
if (url != null) {
- printCrawlInfo();
-
String content = getContent(url);
-
-
-
if (isContentRelevant(content, this.regexpSearchPattern)) {
-
saveContent(url, content);
-
-
- Collection urlStrings = extractUrls(content, url);
- addUrlsToUrlQueue(url, urlStrings);
-
} else {
-
System.out.println(url + " is not relevant ignoring ...");
- }
-
-
-
Thread.sleep(this.delayBetweenUrls);
- }
- }
- closeOutputStream();
- }
整个函数由getNextUrl、getContent、isContentRelevant、extractUrls、addUrlsToUrlQueue等几个核心方法组成,下面将一一介绍。先看getNextUrl:
Java代码

- private CrawlerUrl getNextUrl() throws Throwable {
-
CrawlerUrl nextUrl = null;
-
while ((nextUrl == null) && (!urlQueue.isEmpty())) {
-
CrawlerUrl crawlerUrl = this.urlQueue.remove();
-
-
-
-
-
if (doWeHavePermissionToVisit(crawlerUrl)
- && (!isUrlAlreadyVisited(crawlerUrl))
- && isDepthAcceptable(crawlerUrl)) {
- nextUrl = crawlerUrl;
-
- }
- }
-
return nextUrl;
- }
更多的关于robot.txt的具体写法,可参考以下这篇文章:
http://www.bloghuman.com/post/67/
getContent内部使用apache的httpclient 4.1获取网页内容,具体代码如下:
Java代码
- private String getContent(CrawlerUrl url) throws Throwable {
-
-
HttpClient client = new DefaultHttpClient();
-
HttpGet httpGet = new HttpGet(url.getUrlString());
-
StringBuffer strBuf = new StringBuffer();
- HttpResponse response = client.execute(httpGet);
-
if (HttpStatus.SC_OK == response.getStatusLine().getStatusCode()) {
- HttpEntity entity = response.getEntity();
-
if (entity != null) {
-
BufferedReader reader = new BufferedReader(
-
new InputStreamReader(entity.getContent(), "UTF-8"));
-
String line = null;
-
if (entity.getContentLength() > 0) {
-
strBuf = new StringBuffer((int) entity.getContentLength());
-
while ((line = reader.readLine()) != null) {
- strBuf.append(line);
- }
- }
- }
-
if (entity != null) {
- entity.consumeContent();
- }
- }
-
- markUrlAsVisited(url);
-
return strBuf.toString();
- }
对于垂直型应用来说,数据的准确性往往更为重要。聚焦型爬虫的主要特点是,只收集和主题相关的数据,这就是isContentRelevant方法的作用。这里或许要使用分类预测技术,为简单起见,采用正则匹配来代替。其主要代码如下:
Java代码
- public static boolean isContentRelevant(String content,
- Pattern regexpPattern) {
-
boolean retValue = false;
-
if (content != null) {
-
- Matcher m = regexpPattern.matcher(content.toLowerCase());
- retValue = m.find();
- }
-
return retValue;
- }
extractUrls的主要作用,是从网页中获取更多的URL,包括内部链接和外部链接,代码如下:
Java代码
- public List extractUrls(String text, CrawlerUrl crawlerUrl) {
-
Map urlMap = new HashMap();
- extractHttpUrls(urlMap, text);
- extractRelativeUrls(urlMap, text, crawlerUrl);
-
return new ArrayList(urlMap.keySet());
- }
-
-
-
private void extractHttpUrls(Map urlMap, String text) {
- Matcher m = httpRegexp.matcher(text);
-
while (m.find()) {
- String url = m.group();
-
String[] terms = url.split("a href=\"");
-
for (String term : terms) {
-
-
if (term.startsWith("http")) {
-
int index = term.indexOf("\"");
-
if (index > 0) {
-
term = term.substring(0, index);
- }
- urlMap.put(term, term);
-
System.out.println("Hyperlink: " + term);
- }
- }
- }
- }
-
-
-
private void extractRelativeUrls(Map urlMap, String text,
- CrawlerUrl crawlerUrl) {
- Matcher m = relativeRegexp.matcher(text);
- URL textURL = crawlerUrl.getURL();
- String host = textURL.getHost();
-
while (m.find()) {
- String url = m.group();
-
String[] terms = url.split("a href=\"");
-
for (String term : terms) {
-
if (term.startsWith("/")) {
-
int index = term.indexOf("\"");
-
if (index > 0) {
-
term = term.substring(0, index);
- }
-
String s = "http://" + host + term;
- urlMap.put(s, s);
-
System.out.println("Relative url: " + s);
- }
- }
- }
-
- }
如此,便构建了一个简单的网络爬虫程序,可以使用以下程序来测试它:
Java代码
- public static void main(String[] args) {
-
try {
-
String url = "http://www.amazon.com";
-
Queue urlQueue = new LinkedList();
-
String regexp = "java";
-
urlQueue.add(new CrawlerUrl(url, 0));
-
NaiveCrawler crawler = new NaiveCrawler(urlQueue, 100, 5, 1000L,
- regexp);
-
-
-
- crawler.crawl();
-
} catch (Throwable t) {
- System.out.println(t.toString());
- t.printStackTrace();
- }
- }
当然,你可以为它赋予更为高级的功能,比如多线程、更智能的聚焦、结合Lucene建立索引等等。更为复杂的情况,可以考虑使用一些开源的蜘蛛程序,比如Nutch或是Heritrix等等,就不在本文的讨论范围了。
来源:http://blog.csdn.net/catherineruirui/article/details/7467365
本文转自夏雪冬日博客园博客,原文链接:XXXXXX,如需转载请自行联系原作者