[ACM_几何] Transmitters (zoj 1041 ,可旋转半圆内的最多点)

简介:


Description

In a wireless network with multiple transmitters sending on the same frequencies, it is often a requirement that signals don't overlap, or at least that they don't conflict. One way of accomplishing this is to restrict a transmitter's coverage area. This problem uses a shielded transmitter that only broadcasts in a semicircle.

A transmitter T is located somewhere on a 1,000 square meter grid. It broadcasts in a semicircular area of radius r. The transmitter may be rotated any amount, but not moved. Given N points anywhere on the grid, compute the maximum number of points that can be simultaneously reached by the transmitter's signal. Figure 1 shows the same data points with two different transmitter rotations.

All input coordinates are integers (0-1000). The radius is a positive real number greater than 0. Points on the boundary of a semicircle are considered within that semicircle. There are 1-150 unique points to examine per transmitter. No points are at the same location as the transmitter.

Input consists of information for one or more independent transmitter problems. Each problem begins with one line containing the (x,y) coordinates of the transmitter followed by the broadcast radius, r. The next line contains the number of points N on the grid, followed by N sets of (x,y) coordinates, one set per line. The end of the input is signalled by a line with a negative radius; the (x,y) values will be present but indeterminate. Figures 1 and 2 represent the data in the first two example data sets below, though they are on different scales. Figures 1a and 2 show transmitter rotations that result in maximal coverage.

For each transmitter, the output contains a single line with the maximum number of points that can be contained in some semicircle. 

Example input:

25 25 3.5
7
25 28
23 27
27 27
24 23
26 23
24 29
26 29
350 200 2.0
5
350 202
350 199
350 198
348 200
352 200
995 995 10.0
4
1000 1000
999 998
990 992
1000 999
100 100 -2.5


Example output:

3
4
4

 

题目大意:给一个半圆的圆心和半径,然后给出num个点(x,y),其中半圆可以绕轴心旋转,问最多能有几个点被覆盖,当输入圆的半径为负数时输入结束。

解题思路:直接暴力,每次以圆心和一个点的连线为直径通过差乘>=0为半径的一侧(包含直径上),然后通过判断满足上面的点到圆心的距离和半径的距离判断是否在圆内。

相关知识:差乘与点乘http://blog.csdn.net/zxj1988/article/details/6260576

 
 
复制代码
 1 #include<iostream>
 2 #include<string>
 3 using namespace std;
 4 double Yuan_x,Yuan_y,Yuan_r;
 5 int num,Maxnum;
 6 double x[155],y[155];
 7 bool read(){
 8     cin>>Yuan_x>>Yuan_y>>Yuan_r;
 9     if(Yuan_r<0)return 0;
10     cin>>num;
11     for(int i=0;i<num;i++)cin>>x[i]>>y[i];
12     return 1;
13 }
14 void solve(){
15     Maxnum=-1;
16     int temp;
17     for(int i=0;i<num;i++){
18         temp=0;
19         for(int j=0;j<num;j++){
20             int v_x1=x[i]-Yuan_x , v_y1=y[i]-Yuan_y , 
21                 v_x2=x[j]-Yuan_x , v_y2=y[j]-Yuan_y ;
22             if(v_x1*v_y2-v_x2*v_y1<0)continue;
23             else temp+=(v_x2*v_x2+v_y2*v_y2<=Yuan_r*Yuan_r);
24         }
25         if(temp>Maxnum)Maxnum=temp;
26     }
27 }//直接暴力枚举
28 int main(){
29     while(read()){
30         solve();
31         cout<<Maxnum<<'\n';
32     }return 0;
33 }
复制代码
相关文章
|
5月前
|
机器学习/深度学习 存储
力扣经典150题第三十六题:旋转图像
力扣经典150题第三十六题:旋转图像
31 0
|
5月前
|
知识图谱 C++
大学物理-实验篇——用拉伸法测定金属丝的杨氏(弹性)模量(胡克定律、杨氏模量、平面反射镜、三角函数、螺旋测微器)
大学物理-实验篇——用拉伸法测定金属丝的杨氏(弹性)模量(胡克定律、杨氏模量、平面反射镜、三角函数、螺旋测微器)
174 0
|
6月前
|
机器学习/深度学习 算法 C#
C# | 凸包算法之Andrew‘s,获取围绕一组点的凸多边形的轮廓点
这篇关于凸包算法的文章,本文使用C#和Andrew’s算法来实现凸包算法。 首先消除两个最基本的问题: 什么是凸包呢? 凸包是一个包围一组点的凸多边形。凸多边形是指多边形中的每个内角都小于180度的多边形。 凸包算法有什么用呢? 凸包算法的作用是找到这个凸多边形,并且使用最少的点来绘制出它的轮廓。凸包算法在计算机图形学、计算几何和机器学习等领域中有着广泛的应用。
165 0
|
机器学习/深度学习 索引
一行代码绘制高分SCI限制立方图
Restricted cubic splines (RCS)是一种基于样条函数的非参数化模型,它可以可靠地拟合非线性关系,可以自适应地调整分割结点。在统计学和机器学习领域,RCS通常用来对连续型自变量进行建模,并在解释自变量与响应变量的关系时更加准确和精细。之前有写一篇RCS的文章,但是还是有一定的难度,经过一段时间的研究,发现rcssci包更为简便好用。
326 0
|
Python
LeetCode每日一题——883. 三维形体投影面积
在 n x n 的网格 grid 中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1 立方体。
120 0
LeetCode每日一题——883. 三维形体投影面积
|
人工智能 机器学习/深度学习
bzoj1013 [JSOI2008]球形空间产生器sphere
看了学姐的代码$……$感觉自己的码风竟然玄学的相似$qwq$; 设圆心坐标为$O(x_{1},x_{2},……,x_{3})$ 然后根据$n$为球的定义,就是球上的点到圆心的距离相等, $n$维空间的两点间距离公式 $$\sqrt{(a_{1}-a_{2})^{2}+(b_{1}-b_{2})^{2}+……}$$ 于是,根据$|OX_{1}|=|OX_{2}|$,$|OX_{1}|=|OX_{3}|$,……,$|OX_{1}|=|OX_{n+1}|$ 总共$n$个方程。
1124 0
|
图形学
Unity 3D光源-Directional平行光/逆光效果,光晕详解、教程
Unity4大光源之平行光 本文提供全流程,中文翻译。 Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 —— 高分辨率用户请根据需求调整网页缩放比例) Chinar —— 心...
2027 0