Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
这道题实际上是 Catalan Number卡塔兰数的一个例子,如果对卡塔兰数不熟悉的童鞋可能真不太好做。话说其实我也是今天才知道的好嘛-.-|||,为啥我以前都不知道捏?!为啥卡塔兰数不像斐波那契数那样人尽皆知呢,是我太孤陋寡闻么?!不过今天知道也不晚,不断的学习新的东西,这才是刷题的意义所在嘛! 好了,废话不多说了,赶紧回到题目上来吧。我们先来看当 n = 1的情况,只能形成唯一的一棵二叉搜索树,n分别为1,2,3的情况如下所示:
1 n = 1 2 1 n = 2 / \ 1 2 1 3 3 2 1 n = 3 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
就跟斐波那契数列一样,我们把n = 0 时赋为1,因为空树也算一种二叉搜索树,那么n = 1时的情况可以看做是其左子树个数乘以右子树的个数,左右字数都是空树,所以1乘1还是1。那么n = 2时,由于1和2都可以为跟,分别算出来,再把它们加起来即可。n = 2的情况可由下面式子算出:
dp[2] = dp[0] * dp[1] (1为根的情况)
+ dp[1] * dp[0] (2为根的情况)
同理可写出 n = 3 的计算方法:
dp[3] = dp[0] * dp[2] (1为根的情况)
+ dp[1] * dp[1] (2为根的情况)
+ dp[2] * dp[0] (3为根的情况)
由此可以得出卡塔兰数列的递推式为:
我们根据以上的分析,可以写出代码如下:
class Solution { public: int numTrees(int n) { vector<int> dp(n + 1, 0); dp[0] = 1; dp[1] = 1; for (int i = 2; i <= n; ++i) { for (int j = 0; j < i; ++j) { dp[i] += dp[j] * dp[i - j - 1]; } } return dp[n]; } };
本文转自博客园Grandyang的博客,原文链接:独一无二的二叉搜索树[LeetCode] Unique Binary Search Trees ,如需转载请自行联系原博主。