Dijkstra算法(单源最短路径)

简介:

 Dijkstra算法(单源最短路径)

      单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路径。在弄清楚如何求算单源最短路径问题之前,必须弄清楚最短路径的最优子结构性质。

一.最短路径的最优子结构性质

   该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径。下面证明该性质的正确性。

   假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j)。而P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么P'(i,j)=P(i,k)+P'(k,s)+P(s,j)<P(i,j)。则与P(i,j)是从i到j的最短路径相矛盾。因此该性质得证。

二.Dijkstra算法

   由上述性质可知,如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点。那么(Vi...Vk)也必定是从i到k的最短路径。为了求出最短路径,Dijkstra就提出了以最短路径长度递增,逐次生成最短路径的算法。譬如对于源顶点V0,首先选择其直接相邻的顶点中长度最短的顶点Vi,那么当前已知可得从V0到达Vj顶点的最短距离dist[j]=min{dist[j],dist[i]+matrix[i][j]}。根据这种思路,

假设存在G=<V,E>,源顶点为V0,U={V0},dist[i]记录V0到i的最短距离,path[i]记录从V0到i路径上的i前面的一个顶点。

1.从V-U中选择使dist[i]值最小的顶点i,将i加入到U中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[i]+matrix[i][j]})

3.知道U=V,停止。

代码实现:

复制代码
/*Dijkstra求单源最短路径 2010.8.26*/
 
#include <iostream>
#include<stack>
#define M 100
#define N 100
using namespace std;

typedef struct node
{
    int matrix[N][M];      //邻接矩阵 
    int n;                 //顶点数 
    int e;                 //边数 
}MGraph; 

void DijkstraPath(MGraph g,int *dist,int *path,int v0)   //v0表示源顶点 
{
    int i,j,k;
    bool *visited=(bool *)malloc(sizeof(bool)*g.n);
    for(i=0;i<g.n;i++)     //初始化 
    {
        if(g.matrix[v0][i]>0&&i!=v0)
        {
            dist[i]=g.matrix[v0][i];
            path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点 
        }
        else
        {
            dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大 
            path[i]=-1;
        }
        visited[i]=false;
        path[v0]=v0;
        dist[v0]=0;
    }
    visited[v0]=true;
    for(i=1;i<g.n;i++)     //循环扩展n-1次 
    {
        int min=INT_MAX;
        int u;
        for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点 
        {
            if(visited[j]==false&&dist[j]<min)
            {
                min=dist[j];
                u=j;        
            }
        } 
        visited[u]=true;
        for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值 
        {
            if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
            {
                dist[k]=min+g.matrix[u][k];
                path[k]=u; 
            }
        }        
    }    
}

void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点 
{
    stack<int> s;
    int u=v;
    while(v!=v0)
    {
        s.push(v);
        v=path[v];
    }
    s.push(v);
    while(!s.empty())
    {
        cout<<s.top()<<" ";
        s.pop();
    }
} 

int main(int argc, char *argv[])
{
    int n,e;     //表示输入的顶点数和边数 
    while(cin>>n>>e&&e!=0)
    {
        int i,j;
        int s,t,w;      //表示存在一条边s->t,权值为w
        MGraph g;
        int v0;
        int *dist=(int *)malloc(sizeof(int)*n);
        int *path=(int *)malloc(sizeof(int)*n);
        for(i=0;i<N;i++)
            for(j=0;j<M;j++)
                g.matrix[i][j]=0;
        g.n=n;
        g.e=e;
        for(i=0;i<e;i++)
        {
            cin>>s>>t>>w;
            g.matrix[s][t]=w;
        }
        cin>>v0;        //输入源顶点 
        DijkstraPath(g,dist,path,v0);
        for(i=0;i<n;i++)
        {
            if(i!=v0)
            {
                showPath(path,i,v0);
                cout<<dist[i]<<endl;
            }
        }
    }
    return 0;
}
复制代码

  测试数据:

  

  运行结果:

  


本文转载自海 子博客园博客,原文链接:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html如需转载自行联系原作者


相关文章
|
3月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
102 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
存储 算法 程序员
迪杰斯特拉(Dijkstra)算法(C/C++)
迪杰斯特拉(Dijkstra)算法(C/C++)
|
5月前
|
算法 定位技术
路径规划算法 - 求解最短路径 - A*(A-Star)算法
路径规划算法 - 求解最短路径 - A*(A-Star)算法
174 1
|
5月前
|
机器学习/深度学习 算法 Java
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
这篇文章介绍了基于贪婪技术思想的Prim算法和Dijkstra算法,包括它们的伪代码描述、Java源代码实现、时间效率分析,并展示了算法的测试用例结果,使读者对贪婪技术及其应用有了更深入的理解。
算法设计(动态规划应用实验报告)实现基于贪婪技术思想的Prim算法、Dijkstra算法
|
5月前
|
自然语言处理 算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
69 0
HanLP — HMM隐马尔可夫模型 - 路径规划算法 - 求解最短路径 - 维特比(Viterbi)算法
|
6月前
|
算法 Java
Java语言实现最短路径算法(Shortest Path)
Java语言实现最短路径算法(Shortest Path)
76 3
|
5月前
|
算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
路径规划算法 - 求解最短路径 - Dijkstra(迪杰斯特拉)算法
123 0
|
6月前
|
算法 Java C++
《经典图论算法》迪杰斯特拉算法(Dijkstra)
这个是求最短路径的迪杰斯特拉算法,另外我还写了50多种《经典图论算法》,每种都使用C++和Java两种语言实现,熟练掌握之后无论是参加蓝桥杯,信奥赛,还是其他比赛,或者是面试,都能轻松应对。
|
1天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
14天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
147 80

热门文章

最新文章