最新首发Eclipse+CDT+android-ndk写纯c++安卓应用(附openGL Es)

简介:

首先下载eclipse和cdt。我的版本依次是:Version: Indigo Service Release 2和Version: 1.0.0.201202111925,再下载windows的ndk,我使用的是android-ndk-r9d

什么cygwin这等东西,太恶心了,下载慢。大的要命!

复杂,今天给一个最爽的编译教程。

前面的cdt插件怎么这里pass。网上教程非常多的。直接配置。

。。

启动eclipse,然后点Windows-Prefrences-C/C++-Build-Envionment。加入下面路径


然后创建一个androidproject,把代码所有删除。资源所有删除,AndroidManifest.xml内容例如以下

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    package="com.example.native_activity"
    android:versionCode="1"
    android:versionName="1.0" >

    <uses-sdk
        android:minSdkVersion="9"
        tools:ignore="UsesMinSdkAttributes" />

    <application
        android:hasCode="false"
        android:label="纯CPP应用"
        tools:ignore="AllowBackup,MissingApplicationIcon" >
        <activity
            android:name="android.app.NativeActivity"
            android:configChanges="orientation|keyboardHidden" >

            <!-- Tell NativeActivity the name of or .so -->
            <meta-data
                android:name="android.app.lib_name"
                android:value="native-activity" />

            <intent-filter>
                <action android:name="android.intent.action.MAIN" />

                <category android:name="android.intent.category.LAUNCHER" />
            </intent-filter>
        </activity>
    </application>

</manifest> 

然后创建jni文件夹,里面放三个文件。依次是Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE    := native-activity
LOCAL_SRC_FILES := main.cpp
LOCAL_LDLIBS    := -llog -landroid -lEGL -lGLESv1_CM
LOCAL_STATIC_LIBRARIES := android_native_app_glue

include $(BUILD_SHARED_LIBRARY)

$(call import-module,android/native_app_glue)

Application.mk

APP_PLATFORM := android-14

main.cpp

#include <jni.h>
#include <errno.h>
#include <EGL/egl.h>
#include <GLES/gl.h>
#include <string.h>
#include <android/sensor.h>
#include <android/log.h>
#include <android_native_app_glue.h>

#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, "native-activity", __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, "native-activity", __VA_ARGS__))

/**
 * Our saved state data.
 */
struct saved_state {
	float angle;
	int32_t x;
	int32_t y;
};

/**
 * Shared state for our app.
 */
struct engine {
	struct android_app* app;

	ASensorManager* sensorManager;
	const ASensor* accelerometerSensor;
	ASensorEventQueue* sensorEventQueue;

	int animating;
	EGLDisplay display;
	EGLSurface surface;
	EGLContext context;
	int32_t width;
	int32_t height;
	struct saved_state state;
};

/**
 * Initialize an EGL context for the current display.
 */
static int engine_init_display(struct engine* engine) {
	// initialize OpenGL ES and EGL

	/*
	 * Here specify the attributes of the desired configuration.
	 * Below, we select an EGLConfig with at least 8 bits per color
	 * component compatible with on-screen windows
	 */
	const EGLint attribs[] = { EGL_SURFACE_TYPE, EGL_WINDOW_BIT, EGL_BLUE_SIZE,
			8, EGL_GREEN_SIZE, 8, EGL_RED_SIZE, 8, EGL_NONE };
	EGLint w, h, dummy, format;
	EGLint numConfigs;
	EGLConfig config;
	EGLSurface surface;
	EGLContext context;

	EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);

	eglInitialize(display, 0, 0);

	/* Here, the application chooses the configuration it desires. In this
	 * sample, we have a very simplified selection process, where we pick
	 * the first EGLConfig that matches our criteria */
	eglChooseConfig(display, attribs, &config, 1, &numConfigs);

	/* EGL_NATIVE_VISUAL_ID is an attribute of the EGLConfig that is
	 * guaranteed to be accepted by ANativeWindow_setBuffersGeometry().
	 * As soon as we picked a EGLConfig, we can safely reconfigure the
	 * ANativeWindow buffers to match, using EGL_NATIVE_VISUAL_ID. */
	eglGetConfigAttrib(display, config, EGL_NATIVE_VISUAL_ID, &format);

	ANativeWindow_setBuffersGeometry(engine->app->window, 0, 0, format);

	surface = eglCreateWindowSurface(display, config, engine->app->window,
			NULL);
	context = eglCreateContext(display, config, NULL, NULL);

	if (eglMakeCurrent(display, surface, surface, context) == EGL_FALSE) {
		LOGW("Unable to eglMakeCurrent");
		return -1;
	}

	eglQuerySurface(display, surface, EGL_WIDTH, &w);
	eglQuerySurface(display, surface, EGL_HEIGHT, &h);

	engine->display = display;
	engine->context = context;
	engine->surface = surface;
	engine->width = w;
	engine->height = h;
	engine->state.angle = 0;

	// Initialize GL state.
	glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST);
	glEnable(GL_CULL_FACE);
	glShadeModel(GL_SMOOTH);
	glDisable(GL_DEPTH_TEST);

	return 0;
}

/**
 * Just the current frame in the display.
 */
static void engine_draw_frame(struct engine* engine) {
	if (engine->display == NULL) {
		// No display.
		return;
	}

	// Just fill the screen with a color.
	glClearColor(((float) engine->state.x) / engine->width, engine->state.angle,
			((float) engine->state.y) / engine->height, 1);
	glClear(GL_COLOR_BUFFER_BIT);

	eglSwapBuffers(engine->display, engine->surface);
}

/**
 * Tear down the EGL context currently associated with the display.
 */
static void engine_term_display(struct engine* engine) {
	if (engine->display != EGL_NO_DISPLAY) {
		eglMakeCurrent(engine->display, EGL_NO_SURFACE, EGL_NO_SURFACE,
				EGL_NO_CONTEXT);
		if (engine->context != EGL_NO_CONTEXT) {
			eglDestroyContext(engine->display, engine->context);
		}
		if (engine->surface != EGL_NO_SURFACE) {
			eglDestroySurface(engine->display, engine->surface);
		}
		eglTerminate(engine->display);
	}
	engine->animating = 0;
	engine->display = EGL_NO_DISPLAY;
	engine->context = EGL_NO_CONTEXT;
	engine->surface = EGL_NO_SURFACE;
}

/**
 * Process the next input event.
 */
static int32_t engine_handle_input(struct android_app* app,
		AInputEvent* event) {
	struct engine* engine = (struct engine*) app->userData;
	if (AInputEvent_getType(event) == AINPUT_EVENT_TYPE_MOTION) {
		engine->animating = 1;
		engine->state.x = AMotionEvent_getX(event, 0);
		engine->state.y = AMotionEvent_getY(event, 0);
		return 1;
	}
	return 0;
}

/**
 * Process the next main command.
 */
static void engine_handle_cmd(struct android_app* app, int32_t cmd) {
	struct engine* engine = (struct engine*) app->userData;
	switch (cmd) {
	case APP_CMD_SAVE_STATE:
		// The system has asked us to save our current state.  Do so.
		engine->app->savedState = malloc((size_t)sizeof(struct saved_state));
		*((struct saved_state*) engine->app->savedState) = engine->state;
		engine->app->savedStateSize = sizeof(struct saved_state);
		break;
	case APP_CMD_INIT_WINDOW:
		// The window is being shown, get it ready.
		if (engine->app->window != NULL) {
			engine_init_display(engine);
			engine_draw_frame(engine);
		}
		break;
	case APP_CMD_TERM_WINDOW:
		// The window is being hidden or closed, clean it up.
		engine_term_display(engine);
		break;
	case APP_CMD_GAINED_FOCUS:
		// When our app gains focus, we start monitoring the accelerometer.
		if (engine->accelerometerSensor != NULL) {
			ASensorEventQueue_enableSensor(engine->sensorEventQueue,
					engine->accelerometerSensor);
			// We'd like to get 60 events per second (in us).
			ASensorEventQueue_setEventRate(engine->sensorEventQueue,
					engine->accelerometerSensor, (1000L / 60) * 1000);
		}
		break;
	case APP_CMD_LOST_FOCUS:
		// When our app loses focus, we stop monitoring the accelerometer.
		// This is to avoid consuming battery while not being used.
		if (engine->accelerometerSensor != NULL) {
			ASensorEventQueue_disableSensor(engine->sensorEventQueue,
					engine->accelerometerSensor);
		}
		// Also stop animating.
		engine->animating = 0;
		engine_draw_frame(engine);
		break;
	}
}

/**
 * This is the main entry point of a native application that is using
 * android_native_app_glue.  It runs in its own thread, with its own
 * event loop for receiving input events and doing other things.
 */
void android_main(struct android_app* state) {
	struct engine engine = {0};
	// Make sure glue isn't stripped.
	app_dummy();
	state->userData = &engine;
	state->onAppCmd = engine_handle_cmd;
	state->onInputEvent = engine_handle_input;
	engine.app = state;

	// Prepare to monitor accelerometer
	engine.sensorManager = ASensorManager_getInstance();
	engine.accelerometerSensor = ASensorManager_getDefaultSensor(
			engine.sensorManager, ASENSOR_TYPE_ACCELEROMETER);
	engine.sensorEventQueue = ASensorManager_createEventQueue(
			engine.sensorManager, state->looper, LOOPER_ID_USER, NULL, NULL);

	if (state->savedState != NULL) {
		// We are starting with a previous saved state; restore from it.
		engine.state = *(struct saved_state*) state->savedState;
	}

	// loop waiting for stuff to do.

	while (true) {
		// Read all pending events.
		int ident;
		int events;
		struct android_poll_source* source;

		// If not animating, we will block forever waiting for events.
		// If animating, we loop until all events are read, then continue
		// to draw the next frame of animation.
		while ((ident = ALooper_pollAll(engine.animating ?

0 : -1, NULL, &events, (void**) &source)) >= 0) { // Process this event. if (source != NULL) { source->process(state, source); } // If a sensor has data, process it now. if (ident == LOOPER_ID_USER) { if (engine.accelerometerSensor != NULL) { ASensorEvent event; while (ASensorEventQueue_getEvents(engine.sensorEventQueue, &event, 1) > 0) { LOGI("accelerometer: x=%f y=%f z=%f", event.acceleration.x, event.acceleration.y, event.acceleration.z); } } } // Check if we are exiting. if (state->destroyRequested != 0) { engine_term_display(&engine); return; } } if (engine.animating) { // Done with events; draw next animation frame. engine.state.angle += .01f; if (engine.state.angle > 1) { engine.state.angle = 0; } engine_draw_frame(&engine); } } }


创建完毕收工。然后创建另外一个project。

路径必须是刚才创建project的jni文件夹。名字随便,重点看图


好了点完毕,然后打开main.cpp发现N多错误,直接下设置一下环境变量。右键project,属性(是刚创建的C++project)


接下来看图,把全部的库加进去。



最后加一个Symbol,事实上就是定义一个宏,告诉编译器我如今的平台是Android。add


最后点OK,全部的函数都能正常识别。提示功能也能够用了。开发效率高多了。

编译直接点锤子即可了。


然后在原来的project执行安装即可了!






本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5224584.html,如需转载请自行联系原作者
相关文章
|
28天前
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
|
5月前
|
存储 安全 C++
C++中的引用和指针:区别与应用
引用和指针在C++中都有其独特的优势和应用场景。引用更适合简洁、安全的代码,而指针提供了更大的灵活性和动态内存管理的能力。在实际编程中,根据需求选择适当的类型,能够编写出高效、可维护的代码。理解并正确使用这两种类型,是掌握C++编程的关键一步。
77 1
|
6月前
|
C++
C++中的封装、继承与多态:深入理解与应用
C++中的封装、继承与多态:深入理解与应用
151 1
|
1月前
|
存储 编译器 C++
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
57 2
|
2月前
|
编译器 C++
【C++核心】函数的应用和提高详解
这篇文章详细讲解了C++函数的定义、调用、值传递、常见样式、声明、分文件编写以及函数提高的内容,包括函数默认参数、占位参数、重载等高级用法。
23 3
|
2月前
|
Java Android开发 C++
🚀Android NDK开发实战!Java与C++混合编程,打造极致性能体验!📊
在Android应用开发中,追求卓越性能是不变的主题。本文介绍如何利用Android NDK(Native Development Kit)结合Java与C++进行混合编程,提升应用性能。从环境搭建到JNI接口设计,再到实战示例,全面展示NDK的优势与应用技巧,助你打造高性能应用。通过具体案例,如计算斐波那契数列,详细讲解Java与C++的协作流程,帮助开发者掌握NDK开发精髓,实现高效计算与硬件交互。
138 1
|
3月前
|
存储 算法 C++
C++ STL应用宝典:高效处理数据的艺术与实战技巧大揭秘!
【8月更文挑战第22天】C++ STL(标准模板库)是一组高效的数据结构与算法集合,极大提升编程效率与代码可读性。它包括容器、迭代器、算法等组件。例如,统计文本中单词频率可用`std::map`和`std::ifstream`实现;对数据排序及找极值则可通过`std::vector`结合`std::sort`、`std::min/max_element`完成;而快速查找字符串则适合使用`std::set`配合其内置的`find`方法。这些示例展示了STL的强大功能,有助于编写简洁高效的代码。
50 2
|
3月前
|
存储 搜索推荐 Serverless
【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器
【C++航海王:追寻罗杰的编程之路】哈希的应用——位图 | 布隆过滤器
37 1
|
4月前
|
Java Android开发 C++
🚀Android NDK开发实战!Java与C++混合编程,打造极致性能体验!📊
【7月更文挑战第28天】在 Android 开发中, NDK 让 Java 与 C++ 混合编程成为可能, 从而提升应用性能。**为何选 NDK?** C++ 在执行效率与内存管理上优于 Java, 特别适合高性能需求场景。**环境搭建** 需 Android Studio 和 NDK, 工具如 CMake。**JNI** 构建 Java-C++ 交互, 通过声明 `native` 方法并在 C++ 中实现。**实战** 示例: 使用 C++ 计算斐波那契数列以提高效率。**总结** 混合编程增强性能, 但增加复杂性, 使用前需谨慎评估。
141 4
|
3月前
|
JSON Android开发 C++
Android c++ core guideline checker 应用
Android c++ core guideline checker 应用