探索并发编程(六)------Java多线程性能优化

简介:

大家使用多线程无非是为了提高性能,但如果多线程使用不当,不但性能提升不明显,而且会使得资源消耗更大。下面列举一下可能会造成多线程性能问题的点:

  • 死锁
  • 过多串行化
  • 过多锁竞争
  • 切换上下文
  • 内存同步

下面分别解析以上性能隐患

死锁

关于死锁,我们在学习操作系统的时候就知道它产生的原因和危害,这里就不从原理上去累述了,可以从下面的代码和图示重温一下死锁产生的原因:

[java]  view plain copy
  1. public class LeftRightDeadlock {  
  2.     private final Object left = new Object();  
  3.     private final Object right = new Object();  
  4.     public void leftRight() {  
  5.         synchronized (left) {  
  6.             synchronized (right) {  
  7.                 doSomething();  
  8.             }  
  9.         }  
  10.     }  
  11.     public void rightLeft() {  
  12.         synchronized (right) {  
  13.             synchronized (left) {  
  14.                 doSomethingElse();  
  15.             }  
  16.         }  
  17.     }  
  18. }  

预防和处理死锁的方法:

1)尽量不要在释放锁之前竞争其他锁

一般可以通过细化同步方法来实现,只在真正需要保护共享资源的地方去拿锁,并尽快释放锁,这样可以有效降低在同步方法里调用其他同步方法的情况

2)顺序索取锁资源

如果实在无法避免嵌套索取锁资源,则需要制定一个索取锁资源的策略,先规划好有哪些锁,然后各个线程按照一个顺序去索取,不要出现上面那个例子中不同顺序,这样就会有潜在的死锁问题

3)尝试定时锁

Java 5提供了更灵活的锁工具,可以显式地索取和释放锁。那么在索取锁的时候可以设定一个超时时间,如果超过这个时间还没索取到锁,则不会继续堵塞而是放弃此次任务,示例代码如下:

[java]  view plain copy
  1. public boolean trySendOnSharedLine(String message,  
  2.                                    long timeout, TimeUnit unit)  
  3.                                    throws InterruptedException {  
  4.     long nanosToLock = unit.toNanos(timeout)  
  5.                      - estimatedNanosToSend(message);  
  6.     if (!lock.tryLock(nanosToLock, NANOSECONDS))  
  7.         return false;  
  8.     try {  
  9.         return sendOnSharedLine(message);  
  10.     } finally {  
  11.         lock.unlock();  
  12.     }  
  13. }  

这样可以有效打破死锁条件。

4)检查死锁

JVM采用thread dump的方式来识别死锁的方式,可以通过操作系统的命令来向JVM发送thread dump的信号,这样可以查询哪些线程死锁。

过多串行化

用多线程实际上就是想并行地做事情,但这些事情由于某些依赖性必须串行工作,导致很多环节得串行化,这实际上很局限系统的可扩展性,就算加CPU加线程,但性能却没有线性增长。有个Amdahl定理可以说明这个问题:

其中,F是串行化比例,N是处理器数量,由上可知,只有尽可能减少串行化,才能最大化地提高可扩展能力。降低串行化的关键就是降低锁竞争,当很多并行任务挂在锁的获取上,就是串行化的表现

过多锁竞争

过多锁竞争的危害是不言而喻的,那么看看有哪些办法来降低锁竞争

1)缩小锁的范围

前面也谈到这一点,尽量缩小锁保护的范围,快进快出,因此尽量不要直接在方法上使用synchronized关键字,而只是在真正需要线程安全保护的地方使用

2)减小锁的粒度

Java 5提供了显式锁后,可以更为灵活的来保护共享变量。synchronized关键字(用在方法上)是默认把整个对象作为锁,实际上很多时候没有必要用这么 大一个锁,这会导致这个类所有synchronized都得串行执行。可以根据真正需要保护的共享变量作为锁,也可以使用更为精细的策略,目的就是要在真 正需要串行的时候串行,举一个例子:

[java]  view plain copy
  1. public class StripedMap {  
  2.     // Synchronization policy: buckets[n] guarded by locks[n%N_LOCKS]  
  3.     private static final int N_LOCKS = 16;  
  4.     private final Node[] buckets;  
  5.     private final Object[] locks;  
  6.     private static class Node { ... }  
  7.     public StripedMap(int numBuckets) {  
  8.         buckets = new Node[numBuckets];  
  9.         locks = new Object[N_LOCKS];  
  10.         for (int i = 0; i < N_LOCKS; i++)  
  11.             locks[i] = new Object();  
  12.     }  
  13.     private final int hash(Object key) {  
  14.         return Math.abs(key.hashCode() % buckets.length);  
  15.     }  
  16.     public Object get(Object key) {  
  17.         int hash = hash(key);  
  18.         synchronized (locks[hash % N_LOCKS]) {  
  19.             for (Node m = buckets[hash]; m != null; m = m.next)  
  20.                 if (m.key.equals(key))  
  21.                     return m.value;  
  22.         }  
  23.         return null;  
  24.     }  
  25.     public void clear() {  
  26.         for (int i = 0; i < buckets.length; i++) {  
  27.             synchronized (locks[i % N_LOCKS]) {  
  28.                 buckets[i] = null;  
  29.             }  
  30.         }  
  31.     }  
  32.     ...  
  33. }  

上面这个例子是通过hash算法来把存取的值所对应的hash值来作为锁,这样就只需要对hash值相同的对象存取串行化,而不是像HashTable那样对任何对象任何操作都串行化。

3)减少共享资源的依赖

共享资源是竞争锁的源头,在多线程开发中尽量减少对共享资源的依赖,比如对象池的技术应该慎重考虑,新的JVM对新建对象以做了足够的优化,性能非常好,如果用对象池不但不能提高多少性能,反而会因为锁竞争导致降低线程的可并发性。

4)使用读写分离锁来替换独占锁

Java 5提供了一个读写分离锁(ReadWriteLock)来实现读-读并发,读-写串行,写-写串行的特性。这种方式更进一步提高了可并发性,因为有些场景大部分是读操作,因此没必要串行工作。关于ReadWriteLock的具体使用可以参加一下示例:

[java]  view plain copy
  1. public class ReadWriteMap<K,V> {  
  2.     private final Map<K,V> map;  
  3.     private final ReadWriteLock lock = new ReentrantReadWriteLock();  
  4.     private final Lock r = lock.readLock();  
  5.     private final Lock w = lock.writeLock();  
  6.     public ReadWriteMap(Map<K,V> map) {  
  7.         this.map = map;  
  8.     }  
  9.     public V put(K key, V value) {  
  10.         w.lock();  
  11.         try {  
  12.             return map.put(key, value);  
  13.         } finally {  
  14.             w.unlock();  
  15.         }  
  16.     }  
  17.     // Do the same for remove(), putAll(), clear()  
  18.     public V get(Object key) {  
  19.         r.lock();  
  20.         try {  
  21.             return map.get(key);  
  22.         } finally {  
  23.             r.unlock();  
  24.         }  
  25.     }  
  26.     // Do the same for other read-only Map methods  
  27. }  

切换上下文

线程比较多的时候,操作系统切换线程上下文的性能消耗是不能忽略的,在构建高性能web之路------web服务器长连接 可以看出在进程切换上的代价,当然线程会更轻量一些,不过道理是类似的

内存同步

当使用到synchronized、volatile或Lock的时候,都会为了保证可见性导致更多的内存同步,这就无法享受到JMM结构带来了性能优化。


本文转自快乐就好博客园博客,原文链接:http://www.cnblogs.com/happyday56/p/3757065.html,如需转载请自行联系原作者
相关文章
|
8天前
|
安全 Java 调度
Java编程时多线程操作单核服务器可以不加锁吗?
Java编程时多线程操作单核服务器可以不加锁吗?
22 2
|
1天前
|
Java 数据库 UED
Java的多线程有什么用
Java的多线程技术广泛应用于提升程序性能和用户体验,具体包括:提高性能,通过并行执行充分利用多核CPU;保持响应性,使用户界面在执行耗时操作时仍流畅交互;资源共享,多个线程共享同一内存空间以协同工作;并发处理,高效管理多个客户端请求;定时任务,利用`ScheduledExecutorService`实现周期性操作;任务分解,将大任务拆分以加速计算。多线程尤其适用于高并发和并行处理场景。
|
11天前
|
Java 开发者
深入探索Java中的并发编程
本文将带你领略Java并发编程的奥秘,揭示其背后的原理与实践。通过深入浅出的解释和实例,我们将探讨Java内存模型、线程间通信以及常见并发工具的使用方法。无论是初学者还是有一定经验的开发者,都能从中获得启发和实用的技巧。让我们一起开启这场并发编程的奇妙之旅吧!
|
12天前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
|
14天前
|
Java 开发者
Java中的多线程基础与应用
【9月更文挑战第22天】在Java的世界中,多线程是一块基石,它支撑着现代并发编程的大厦。本文将深入浅出地介绍Java中多线程的基本概念、创建方法以及常见的应用场景,帮助读者理解并掌握这一核心技术。
|
10天前
|
Java 调度
Java-Thread多线程的使用
这篇文章介绍了Java中Thread类多线程的创建、使用、生命周期、状态以及线程同步和死锁的概念和处理方法。
Java-Thread多线程的使用
|
12天前
|
算法 安全 Java
Java中的并发编程是如何实现的?
Java中的并发编程是通过多线程机制实现的。Java提供了多种工具和框架来支持并发编程。
14 1
|
13天前
|
Java 调度 开发者
Java中的多线程编程:从基础到实践
本文旨在深入探讨Java多线程编程的核心概念和实际应用,通过浅显易懂的语言解释多线程的基本原理,并结合实例展示如何在Java中创建、控制和管理线程。我们将从简单的线程创建开始,逐步深入到线程同步、通信以及死锁问题的解决方案,最终通过具体的代码示例来加深理解。无论您是Java初学者还是希望提升多线程编程技能的开发者,本文都将为您提供有价值的见解和实用的技巧。
15 2
|
10天前
|
Java 数据处理 调度
Java中的多线程编程:从基础到实践
本文深入探讨了Java中多线程编程的基本概念、实现方式及其在实际项目中的应用。首先,我们将了解什么是线程以及为何需要多线程编程。接着,文章将详细介绍如何在Java中创建和管理线程,包括继承Thread类、实现Runnable接口以及使用Executor框架等方法。此外,我们还将讨论线程同步和通信的问题,如互斥锁、信号量、条件变量等。最后,通过具体的示例展示了如何在实际项目中有效地利用多线程提高程序的性能和响应能力。
|
11天前
|
安全 算法 Java
Java中的多线程编程:从基础到高级应用
本文深入探讨了Java中的多线程编程,从最基础的概念入手,逐步引导读者了解并掌握多线程开发的核心技术。无论是初学者还是有一定经验的开发者,都能从中获益。通过实例和代码示例,本文详细讲解了线程的创建与管理、同步与锁机制、线程间通信以及高级并发工具等主题。此外,还讨论了多线程编程中常见的问题及其解决方案,帮助读者编写出高效、安全的多线程应用程序。
下一篇
无影云桌面