使用Fluentd + MongoDB构建实时日志收集系统

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
日志服务 SLS,月写入数据量 50GB 1个月
简介:

Fluentd是一个日志收集系统,它的特点在于其各部分均是可定制化的,你可以通过简单的配置,将日志收集到不同的地方。

目前开源社区已经贡献了下面一些存储插件:MongoDB, Redis, CouchDB,Amazon S3, Amazon SQS, Scribe, 0MQ, AMQP, Delayed, Growl 等等。

本文要介绍的是在Fluentd的最新版中已经内置的MongoDB支持。主要通过一个收集Apache日志的例子来说明其使用方法:

机制图解
tumblr_lvpwxvhWvL1r2sums

安装

为了完成相关的测试,需要安装下面一些组件:

  • Fluentd with MongoDB Plugin
  • MongoDB
  • Apache (with the Combined Log Format)

在Fluentd的最新安装包中已经包含了MongoDB插件,你也可以用命令

gem install fluent-plugin-mongo

来进行安装

配置

如果你是使用上面的deb/rpm包安装的Fluentd,那么配置文件位置在:/etc/td-agent/td-agent.conf,否则其位置应该在:/etc/fluentd/fluentd.conf

首先我们编辑配置文件中的source来设置日志来源

<source>
  type tail
  format apache
  path /var/log/apache2/access_log
  tag mongo.apache
</source>

其中:

  1. type tail: tail方式是 Fluentd 内置的输入方式,其原理是不停地从源文件中获取新的日志。
  2. format apache: 指定使用 Fluentd 内置的 Apache 日志解析器。
  3. path /var/log/apache2/access_log: 指定日志文件位置。
  4. tag mongo.apache指定tag,tag被用来对不同的日志进行分类

下面再来编辑输出配置,配置日志收集后存储到MongoDB中

<match mongo.**>
  # plugin type
  type mongo

  # mongodb db + collection
  database apache
  collection access

  # mongodb host + port
  host localhost
  port 27017

  # interval
  flush_interval 10s
</match>

match标签后面可以跟正则表达式以匹配我们指定的tag,只有匹配成功的tag对应的日志才会运用里面的配置。配置中的其它项都比较好理解,看注释就可以了,其中flush_interval是用来控制多长时间将日志写入MongoDB一次。

测试

用ab工具对Apache进行访问,以产生相应的访问日志以供收集

$ ab -n 100 -c 10 http://localhost/

然后我们在MongoDB中就能看到收集到的日志了

$ mongo
> use apache
> db.access.find()
{ "_id" : ObjectId("4ed1ed3a340765ce73000001"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path" : "/", "code" : "200", "size" : "44", "time" : ISODate("2011-11-27T07:56:27Z") }
{ "_id" : ObjectId("4ed1ed3a340765ce73000002"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path" : "/", "code" : "200", "size" : "44", "time" : ISODate("2011-11-27T07:56:34Z") }

{ "_id" : ObjectId("4ed1ed3a340765ce73000003"), "host" : "127.0.0.1", "user" : "-", "method" : "GET", "path" : "/", "code" : "200", "size" : "44", "time" : ISODate("2011-11-27T07:56:34Z") }



本文转自茄子_2008博客园博客,原文链接:http://www.cnblogs.com/xd502djj/p/3552882.html,如需转载请自行联系原作者。



相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。 &nbsp; 相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
相关文章
|
1月前
|
存储 前端开发 数据可视化
Grafana Loki,轻量级日志系统
本文介绍了基于Grafana、Loki和Alloy构建的轻量级日志系统。Loki是一个由Grafana Labs开发的日志聚合系统,具备高可用性和多租户支持,专注于日志而非指标,通过标签索引而非内容索引实现高效存储。Alloy则是用于收集和转发日志至Loki的强大工具。文章详细描述了系统的架构、组件及其工作流程,并提供了快速搭建指南,包括准备步骤、部署命令及验证方法。此外,还展示了如何使用Grafana查看日志,以及一些基本的LogQL查询示例。最后,作者探讨了Loki架构的独特之处,提出了“巨型单体模块化”的概念,即一个应用既可单体部署也可分布式部署,整体协同实现全部功能。
446 69
Grafana Loki,轻量级日志系统
|
2月前
|
存储 安全 Java
Spring Boot 3 集成Spring AOP实现系统日志记录
本文介绍了如何在Spring Boot 3中集成Spring AOP实现系统日志记录功能。通过定义`SysLog`注解和配置相应的AOP切面,可以在方法执行前后自动记录日志信息,包括操作的开始时间、结束时间、请求参数、返回结果、异常信息等,并将这些信息保存到数据库中。此外,还使用了`ThreadLocal`变量来存储每个线程独立的日志数据,确保线程安全。文中还展示了项目实战中的部分代码片段,以及基于Spring Boot 3 + Vue 3构建的快速开发框架的简介与内置功能列表。此框架结合了当前主流技术栈,提供了用户管理、权限控制、接口文档自动生成等多项实用特性。
101 8
|
3月前
|
存储 NoSQL 安全
【赵渝强老师】MongoDB的Journal日志
MongoDB通过Journal日志保证数据安全,记录检查点后的更新,确保数据库从异常中恢复到有效状态。每个Journal文件100M,存于--dbpath指定的journal子目录。默认已启用Journal日志,可通过--journal参数手动启用。WiredTiger存储引擎使用128KB内存缓冲区,异常关机时可能丢失最多128KB的数据。视频讲解和详细步骤参见附录。
94 17
|
3月前
|
存储 监控 安全
什么是事件日志管理系统?事件日志管理系统有哪些用处?
事件日志管理系统是IT安全的重要工具,用于集中收集、分析和解释来自组织IT基础设施各组件的事件日志,如防火墙、路由器、交换机等,帮助提升网络安全、实现主动威胁检测和促进合规性。系统支持多种日志类型,包括Windows事件日志、Syslog日志和应用程序日志,通过实时监测、告警及可视化分析,为企业提供强大的安全保障。然而,实施过程中也面临数据量大、日志管理和分析复杂等挑战。EventLog Analyzer作为一款高效工具,不仅提供实时监测与告警、可视化分析和报告功能,还支持多种合规性报告,帮助企业克服挑战,提升网络安全水平。
131 2
|
4月前
|
存储 Linux Docker
centos系统清理docker日志文件
通过以上方法,可以有效清理和管理CentOS系统中的Docker日志文件,防止日志文件占用过多磁盘空间。选择合适的方法取决于具体的应用场景和需求,可以结合手动清理、logrotate和调整日志驱动等多种方式,确保系统的高效运行。
395 2
|
4月前
|
存储 数据采集 监控
开源日志Fluentd
【10月更文挑战第21天】
81 7
|
5月前
|
XML JSON 监控
告别简陋:Java日志系统的最佳实践
【10月更文挑战第19天】 在Java开发中,`System.out.println()` 是最基本的输出方法,但它在实际项目中往往被认为是不专业和不足够的。本文将探讨为什么在现代Java应用中应该避免使用 `System.out.println()`,并介绍几种更先进的日志解决方案。
115 1
|
1月前
|
存储 NoSQL MongoDB
数据库数据恢复—MongoDB数据库迁移过程中丢失文件的数据恢复案例
某单位一台MongoDB数据库由于业务需求进行了数据迁移,数据库迁移后提示:“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
3月前
|
存储 JSON NoSQL
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
97 15
|
3月前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板