[PAL算法说明]SAP HANA PAL线性回归预测分析Linear Regression算法说明LRREGRESSION

简介:

一元线性回归预测是指成对的两个变量数据的散点图呈现出直线趋势时,采用最小二乘法,找到两者之间的经验公式,即一元线性回归预测模型。根据自变量的变化,来估计因变量变化的预测方法。

 

概念

实质上,虽然一个变量(称为因变量)受许多因素(称为自变量)的影响,但只有一个起重要的、关键性作用。这时若因变量于自变量在平面坐标系上标出,就可得出一系列点,若点的分布呈现出直线型模式,就可采用一元线性回归预测。两个变量在平面坐标系上所构成点的分布统称为散点图。

 

基本思想

确定直线的方法是最小二乘法最小二乘法的基本思想:最有代表性的直线应该是直线到各点的距离最近。然后用这条直线进行预测。

 

建立

1、选取一元线性回归模型的变量 ;

2、绘制计算表和拟合散点图;

3、计算变量间的回归系数及其相关的显著性 ;

4、回归分析结果的应用

 

模型检验

1、经济意义检验:就是根据模型中各个参数的经济含义,分析各参数的值是否与分析对象的经济含义相符。

2、回归标准差检验

3、拟合优度检验

4、回归系数的显著性检验

 

模型预测

可以分为:点预测和置信区间预测法

1、点预测法:将自变量取值带入回归预测模型求出因变量的预测值。

2、置信区间预测法:估计一个范围,并确定该范围出现的概率。置信区间的大小的影响的因素:a、因变量估计值;b、回归标准差;C、概率度t。

 

模型分析

一元线性回归分析预测法,是根据自变量x和因变量Y的相关关系,建立x与Y的线性回归方程进行预测的方法。由于市场现象一般是受多种因素的影响,而并不是仅仅受一个因素的影响。所以应用一元线性回归分析预测法,必须对影响市场现象的多种因素做全面分析。只有当诸多的影响因素中,确实存在一个对因变量影响作用明显高于其他因素的变量,才能将它作为自变量,应用一元相关回归分析市场预测法进行预测。

一元线性回归分析法的预测模型为:

式中,xt代表t期自变量的值;

代表t期因变量的值;

a、b代表一元线性回归方程的参数。

a、b参数由下列公式求得(用代表):

为简便计算,我们作以下定义:

(2)

式中:

这样定义a、b后,参数由下列公式求得:

将a、b代入一元线性回归方程Yt = a + bxt,就可以建立预测模型,那么,只要给定xt值,即可求出预测值。

在回归分析预测法中,需要对X、Y之间相关程度作出判断,这就要计算相关系数Y,其公式如下:

相关系数r的特征有:

①相关系数取值范围为:-1≤r≤1 。

②r与b符合相同。当r>0,称正线性相关,Xi上升,Yi呈线性增加。当r<0,称负线性相关,Xi上升,Yi呈线性减少。

③|r|=0,X与Y无线性相关关系;|r|=1,完全确定的线性相关关系;0<|r|<1,X与Y存在一定的线性相关关系;|r|&gt;0.7,为高度线性相关;0.3<|r|≤0.7,为中度线性相关;|r|≤0.3,为低度线性相关。

专注于企业信息化,最近对股票数据分析较为感兴趣,可免费分享股票个股主力资金实时变化趋势分析工具,股票交流QQ群:457394862
分类:  SAP HANA

本文转自沧海-重庆博客园博客,原文链接:http://www.cnblogs.com/omygod/archive/2013/05/12/3073783.html,如需转载请自行联系原作者
目录
相关文章
|
SQL 存储 JavaScript
SAP HANA 详细介绍
SAP HANA 详细介绍
1855 0
|
大数据
为什么要学习SAP HANA
大数据最近几年是一个比较火的名词,2015年读过一本叫做《大数据时代》的书,航空机票的例子让我记忆犹新。如今工作中接触到SAP HANA,勾起了我心中对大数据的欲望。
301 1
|
存储 缓存 算法
「内存数据库」SAP HANA的不可告人的秘密
「内存数据库」SAP HANA的不可告人的秘密
|
大数据
《CIO指南:如何使用SAP HANA平台处理大数据》电子版地址
CIO指南:如何使用SAP HANA平台处理大数据
202 2
《CIO指南:如何使用SAP HANA平台处理大数据》电子版地址
|
存储 缓存 算法
「首席看HANA」SAP HANA的秘密- 不要告诉任何人
「首席看HANA」SAP HANA的秘密- 不要告诉任何人
|
24天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
142 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
118 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
177 3
|
24天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
119 8
|
24天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
109 8