深入理解功率MOSFET数据表

简介:

在汽车电子的驱动负载的各种应用中,最常见的半导体元件就是功率MOSFET了。本文不准备写成一篇介绍功率MOSFET的技术大全,只是让读者去了解如何正确的理解功率MOSFET数据表中的常用主要参数,以帮助设计者更好的使用功率MOSFET进行设计。

  数据表中的参数分为两类:即最大额定值和电气特性值。对于前者,在任何情况下都不能超过,否则器件将永久损害;对于后者,一般以最小值、最大值、和典型值的形式给出,它们的值与测试方法和应用条件密切相关。在实际应用中,若超出电气特性值,器件本身并不一定损坏,但如果设计裕度不足,可能导致电路工作失常。

  在功率MOSFET的数据表给出的参数中, 通常最为关心的基本参数为、Qgs、和Vgs。更为高级一些的参数,如ID、Rthjc、SOA、Transfer Curve、EAS等,将在本文的下篇中再做介绍。

  为了使每个参数的说明更具备直观性和易于理解,选用了英飞凌公司的功率MOSFET,型号为IPD90N06S4-04(http://www.infineon.com/optimos-T)。本文中所有的表格和图表也是从IPD90N06S4-04中摘录出来的。下面就对这些参数做逐一的介绍。

   : 通态电阻。是和温度和Vgs相关的参数,是MOSFET重要的参数之一。在数据表中,给出了在室温下的典型值和最大值,并给出了得到这个值的测试条件,详见下表。

 

  除了表格以外,数据表中还给出了通态电阻随着结温变化的数据图。从图中可以看出,结温越高,通态电阻越高。正是由于这个特性,当单个功率MOSFET的电流容量不够时,可以采用多个同类型的功率MOSFET并联来进行扩流。

  如果需要计算在指定温度下的,可以采用以下的计算公式。

 

  上式中为与工艺技术有关的常数,对于英飞凌的此类功率MOSFET,可以采用0.4作为常数值。如果需要快速的估算,可以粗略认为:在最高结温下的通态电阻是室温下通态电阻的2倍。下表的曲线给出了随环境温度变化的关系。

 

  :定义了MOSFET的源级和漏级的最大能购承受的直流电压。在数据表中,此参数都会在数据表的首页给出。注意给出的值是在室温下的值。
此外,数据表中还会给出在全温范围内(-55 C…+175 C)  随着温度变化的曲线。

 

  从上表中可以看出,是随着温度变化的,所以在设计中要注意在极限温度下的 仍然能够满足系统电源对 的要求。

  Qgs:数据表中给出了为了使功率MOSFET导通时在给定了的Vds电压下,当Qgs变化时的栅级电荷变化的曲线。从图表中可以看出,为了使MOSFET完全导通,Qgs的典型值约等于10V,由于器件完全导通,可以减少器件的静态损耗。

 

 

  Vgs:描述了在指定了漏级电流下需要的栅源电压。数据表中给出的是在室温下,当Vds= Vgs时,漏极电流在微安等级时的Vgs电压。数据表中给出了最小值、典型值和最大值。

 

  需要注意的是,在同样的漏极电流下,Vgs电压会随着结温的升高而减小。在高结温的情况下,漏极电流已经接近达到了Idss (漏极电流)。为此,数据表中还会给出一条比常温下指定电流大10倍的漏极电流曲线作为设计参考。如下图所示。

 

以上介绍了在功率MOSFET数据表中最为设计者关心的基本参数、、Qgs、和Vgs。

  为了更深入的理解功率MOSFET的其它一些参数,本文仍然选用英飞凌公司的功率MOSFET为例,型号为IPD90N06S4-04(http://www.infineon.com/optimos-T)。为了使每个参数的说明更具备直观性和易于理解,所有的表格和图表也是从IPD90N06S4-04中摘录出来的。下面就对这些参数做逐一的介绍。

  如果需要更好的理解功率MOSFET,则需要了解更多的一些参数,这些参数对于设计都是十分必要和有用的。这些参数是ID、Rthjc、SOA、Transfer Curve、和EAS。

  ID:定义了在室温下漏级可以长期工作的电流。需要注意的是,这个ID电流的是在Vgs在给定电压下,TC=25℃下的ID电流值。

  ID的大小可以由以下的公式计算:

 

 

  以IPD90N06S4-04为例,计算出的结果等于169A。为何在数据表上只标注90A呢?这是因为最大的电流受限于封装脚位与焊线直径,在数据表的注释1)中可以看到详细的解释。如下表所示:

 

  此外,数据表中还给出了ID和结温之间的曲线关系。从下表中可以看出,当环境温度升高时, ID会随着温度而变化。在最差的情况下,需要考虑在最大环境温度下的ID的电流仍然满足电路设计的正常电流的要求。


       Rthjc:温阻是对设计者需要非常关注的设计参数,特别是当需要计算功率MOSFET在单脉冲和不同占空比时的功率损耗时,就需要查看这个数据表来进行设计估算。笔者将在如何用数据表来进行设计估算中来具体解释。


SOA:功率MOSFET的过载能力较低,为了保证器件安全工作,具有较高的稳定性和较长的寿命,对器件承受的电流、电压、和功率有一定的限制。把这种限制用Uds-Id坐标平面表示,便构成功率MOSFET的安全工作区(Safe Operating Area,缩称SOA)。同一种器件,其SOA的大小与偏置电压、冷却条件、和开关方式等都有关系。如果要细分SOA,还有二种分法。按栅极偏置分为正偏置SOA和反偏置SOA;按信号占空比来分为直流SOA、单脉冲SOA、和重复脉冲SOA。

  功率MOSFET在开通过程及稳定导通时必须保持栅极的正确偏置,正偏置SOA是器件处于通态下容许的工作范围;相反,当关断器件时,为了提高关断速度和可靠性,需要使栅极处于反偏置,所以反偏置SOA是器件关断时容许的工作范围。

  直流SOA相当于占空比->1是的工作条件;单脉冲SOA则对应于占空比-> 0时的工作条件;重复脉冲SOA对应于占空比在0 < D < 1时的工作条件。从数据表上可以看出:单脉冲SOA最大,重复脉冲SOA次之,直流SOA最窄。

 

  Transfer Curve:是用图表的方式表达出ID和Vgs的函数关系。厂商会给出在不同环境温度下的三条曲线。通常这三条曲线都会相交与一点,这个点叫做温度稳定点。

  如果加在MOSFET的Vgs低于温度稳定点(在IPD90N06S4-04中是Vgs<6.2V),此时的MOSFET是正温度系数的,就是說,ID的电流是随着结温同时增加的。在设计中,当应用在大电流的设计中时,应避免使功率MOSFET工作在在正温度系数区域。

  当Vgs超过温度稳定点(在IPD90N06S4-04中是Vgs>6.2V), MOSFET是正温度系数的, 就是說,ID的电流是随着结温的增加是减少的。这在实际应用中是一个非常好的特性,特别是是在大电流的设计应用中时,这个特性会帮助功率MOSFET通过减少ID电流来减少结温的增加。

 

  EAS: 为了了解在雪崩电流情况下功率MOSFET的工作情况,数据表中给出了雪崩电流和时间对应的曲线,这个曲线上可以读出在相应的雪崩电流下,功率MOSFET在不损坏的情况下能够承受的时间。对于同样的雪崩能量,如果雪崩电流减少,能够承受的时间会变长,反之亦然。环境温度对于雪崩电流的等级也有影响,当环境温度升高时,由于收到最大结温的限制,能够承受的雪崩电流会减少。

 

上表给出的只是在室温下的EAS,在设计中还需要用到在不同环境温度下的EAS,厂商在数据表中也会给出,如下图所示。

 

  数据表中给出了功率MOSFET能够承受的雪崩能量的值。在次例子中,室温下的EAS=331mJ


本文转自emouse博客园博客,原文链接:http://www.cnblogs.com/emouse/archive/2011/02/26/2198174.html,如需转载请自行联系原作者

相关文章
|
8月前
CAN总线位时序的介绍
CAN总线利用CAN_H和CAN_L线的电位差传输数据,显性电平(0,2.5V差值)对应逻辑0,隐性电平(1,0V差值)对应逻辑1。由于NRZ无返回零通信方式,同步是个挑战,特别是距离远时。为解决同步问题,CAN总线采用硬件同步和再同步技术,位时序分为同步段、传播段、两个相位缓冲段,每个段由Tq时间量子构成,允许调整以确保多个单元间的同步采样。
110 0
|
8月前
CAN总线位时序
CAN控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。 显性电平对应逻辑 0,CAN_H 和 CAN_L 之差为 2.5V 左右。而隐性电平对应逻辑 1,CAN_H 和 CAN_L 之差为0V。隐形电平具有包容的意味,只有所有的单元都输出隐性电平,总线上才为隐性电平(显性电平比隐性电平更强)。 CAN总线是采用NRZ(Non-Return to Zero)方法进行通讯的,这种通信有一种不好的地方,就是各个位的开头或者结尾都没有附加同步信号。CAN总线在长距离运输中,由于发送单元和接收单元存在的时钟频率
|
存储 数据采集
时序逻辑电路的应用及其作用
一、什么时序逻辑电路 时序逻辑电路是一种电子电路,用于处理和存储时序信息。它通过使用时钟信号来控制电路的行为,以实现特定的功能。 时序逻辑电路通常由触发器和组合逻辑电路组成。触发器是一种存储器件,可以存储和传递电信号。组合逻辑电路则根据输入信号的组合产生输出信号。 时序逻辑电路的行为是根据时钟信号的变化来确定的。时钟信号是一个周期性的信号,用于同步电路的操作。在每个时钟周期中,电路根据输入信号和当前状态来计算输出信号,并在时钟信号的上升沿或下降沿时更新状态。 时序逻辑电路可以用于实现各种功能,如计数器、状态机、时序控制器等。它在数字系统中起着重要的作用,用于处理时序信息和控制电路的行为。 二、
748 0
|
5月前
|
传感器 算法 芯片
在写温度传感器驱动之前:热敏电阻的温度、电阻、电压的映射关系
本文介绍了温度传感器中NTC热敏电阻的温度、电阻、电压之间的映射关系,通过理论计算和实际测量验证了在特定温度下电阻值和电压值的对应关系,为编写温度传感器驱动提供了必要的理解和方法。
73 1
|
7月前
电容器在电路设计中的多元角色:全面解析
电容器在电子电路中扮演多种角色:如滤波、退耦、旁路、耦合、调谐等。它们用于滤除杂波、平滑直流、阻止低频信号、连接交流信号、调节频率、稳定振荡等。电容还应用于定时、加速、缩短电路,消除频率影响,预加重和去加重音频信号,以及相位控制、反馈、限流降压等。理解电容的功能对于电子电路设计至关重要。
HMI-42-【节能模式】实现油量表和水温表
今天我来搞一下水温表和油量表。其实就是两个进度条。搞一下。
HMI-42-【节能模式】实现油量表和水温表
|
8月前
|
关系型数据库
内置功率 MOSFET 的高频同步整流降压开关变换器
一、基本描述 MP2315 是一款内置功率 MOSFET 的高频同步整流降压开关变换器。它提供了非常紧凑的解决方案,在宽输入范围内可实现 3A 连续输出电流,具有出色的负载和线性调整率。MP2315 在输出电流负载范围内采用同步工作模式以达到高效率。其电流控制模式提供了快速瞬态响应,并使环路更易稳定。全方位保护功能包括过流保护(OCP)和过温关断保护。MP2315 最大限度地减少了现有标准外部元器件的使用,采用节省空间的8-pin TSOT23 封装。 二、基本特性 宽工作输入电压范围:4.5V 至 24V 3A 负载电流 内置90mΩ/40mΩ低导通电阻功率 MOSFETs 低静
|
存储 消息中间件 传感器
SPL 实现电力高频时序数据实时存储统计
SPL 实现电力高频时序数据实时存储统计
SPL 实现电力高频时序数据实时存储统计
|
算法 索引
m索引OFDM调制解调系统的性能仿真分析
m索引OFDM调制解调系统的性能仿真分析
207 0
m索引OFDM调制解调系统的性能仿真分析
|
编解码 算法 BI
地表反照率数据、地表净辐射通量、太阳辐射数据、地表温度、地表显热通量、NDVI、NPP、土地利用数据
地表反照率数据、地表净辐射通量、太阳辐射数据、地表温度、地表显热通量、NDVI、NPP、土地利用数据
地表反照率数据、地表净辐射通量、太阳辐射数据、地表温度、地表显热通量、NDVI、NPP、土地利用数据