[ZT] matlab中plot画图参数的设置

简介:

一、Matlab绘图中用到的直线属性包括:

(1)LineStyle:线形

(2)LineWidth:线宽

(3)Color:颜色

(4)MarkerType:标记点的形状

(5)MarkerSize:标记点的大小

(6)MarkerFaceColor:标记点内部的填充颜色

(7)MarkerEdgeColor:标记点边缘的颜色

1、线形标记符    线形
 -           实线
 --          虚线
 :         点线
 -.         点横线 2、点形标记符    点形
 +          加号
 o          圆圈
 *          星号
 .          实心点
 x         叉号
 s         正方形
 d         钻石形
 ^         上三角形
 v         下三角形
 >        右三角形
 <        左三角形
 p        五角星形
 h        六角星形 3、颜色标记符    颜色
 r             红
 g            绿
 b            蓝
 c          蓝绿
 m         紫红
 y           黄
 k           黑
 w          白
 
二、描绘不同的直线
当我们需要对不同类别的数据点进行连线的时候,可以设置以下属性来区分不同类别的点和相应的直线:
(1)LineStyle:线形
(2)MarkerSymbol:点形
(3)Color:颜色
例如:
     plot(x,y,'-.or','MarkerFaceColor','g')
其中线形为点横线,数据点形状为圆圈,线条和数据点边缘的颜色都是红色,数据点的填充颜色为绿色。

三、描绘数据点的分布
有时候我们希望画出数据点的分布情况,不需要画出这些点之间的连线,则可以按以下方式实现:
    plot(x,y,'d')
即只定义数据点的点形。

最后给出一个例子说明怎样运用以上属性来画图:

plot(t,sin(2*t),'-mo',...
                'LineWidth',2,...
                'MarkerEdgeColor','k',...
                'MarkerFaceColor',[.49 1 .63],...
                'MarkerSize',12)

本文转自博客园Grandyang的博客,原文链接:画图参数的设置[ZT] matlab中plot,如需转载请自行联系原博主。
相关文章
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
2月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
3月前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
4月前
|
算法
基于卡尔曼滤波的系统参数辨识matlab仿真
此程序采用卡尔曼滤波技术实现系统参数在线辨识,通过MATLAB 2022a仿真展现参数收敛过程、辨识误差,并比较不同信噪比下系统性能。卡尔曼滤波递归地结合历史估计与当前观测,优化状态估计。参数辨识中,系统参数被视为状态变量,通过迭代预测和更新步骤实现在线估计,有效处理了线性系统中的噪声影响。
|
4月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的Kp、Ki、Kd参数,以输出误差为目标值,迭代求得最优参数。采用MATLAB 2022a验证,利用遗传算法全局寻优特性,自动完成参数整定,适合复杂及非线性系统,有效提升控制性能。
|
5月前
|
安全 C++
基于MATLAB的电力线路参数计算仿真
*1. 课题概述** - 电力线路分为输电与配电,计算关键参数至关重要 - 本项目开发基于MATLAB的软件,用于计算电力线路的重要参数 *2. 系统仿真结果** - 实现了工频电场、电力系统潮流等参数的计算。 - 包括MATLAB界面设计与计算功能实现。 *3. 系统原理简介** - **额定电压**: 设备最佳工作电压,保障性能稳定及延长使用寿命。 - **输变电设施**: 运行时产生工频电场和磁场,需符合国家标准限值。 - **线径计算**: 依据电流密度和趋肤效应确定导线截面积。 - **电力系统潮流计算**: 基于牛顿-拉夫逊法求解电力系统稳态运行状态,用于检查系统过负荷及电压质量。
|
5月前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
74 7
|
4月前
|
算法
基于EM期望最大化算法的GMM模型参数估计matlab仿真
此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。
|
5月前
|
算法 索引
基于Prony算法的系统参数辨识matlab仿真
Prony算法在MATLAB2022a中用于信号分析,识别复指数信号成分。核心程序通过模拟信号X1,添加不同SNR的噪声,应用Prony方法处理并计算误差。算法基于离散序列的复指数叠加模型,通过构建矩阵并解线性方程组估计参数,实现LTI系统动态特性的辨识。

热门文章

最新文章

下一篇
无影云桌面