参考文献:http://www.hadooper.cn/dct/page/65777
1排序实例
排序实例仅仅用 map/reduce框架来把输入目录排序放到输出目录。 输入和输出必须是顺序文件,键和值是BytesWritable.mapper是预先定义的IdentityMapper,reducer 是预先定义的 IdentityReducer, 两个都是把输入直接的输出。
要运行这个例 子:bin/hadoop jar hadoop-*-examples.jar sort [-m <#maps>] [-r <#reduces>] <in-dir> <out-dir>
2运行排序基准测试
为了使得排序例子作为一个 基准测试,用 RandomWriter产 生10GB/node 的数据。然后用排序实例来进行排序。这个提供了一个可扩展性依赖于集群的大小的排序基准。默认情况下,排序实例用1.0*capacity作为 reduces的数量,依赖于你的集群的大小你可能会在1.75*capacity的情况下得到更好的结果。To use the sort example as a benchmark, generate 10GB/node of random data using RandomWriter. Then sort the data using the sort example. This provides a sort benchmark that scales depending on the size of the cluster. By default, the sort example uses 1.0 * capacity for the number of reduces and depending on your cluster you may see better results at 1.75 * capacity.
命令是:
- % bin/hadoop jar hadoop-*-examples.jar randomwriter rand
- % bin/hadoop jar hadoop-*-examples.jar sort rand rand-sort
排序支持一般的选项:参见DevelopmentCommandLineOptions
3具体实验
3.1代码实例Sort.java
- /**
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- package org.apache.hadoop.examples;
- import java.io.IOException;
- import java.net.URI;
- import java.util.*;
- import org.apache.hadoop.conf.Configuration;
- import org.apache.hadoop.conf.Configured;
- import org.apache.hadoop.filecache.DistributedCache;
- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.BytesWritable;
- import org.apache.hadoop.io.Writable;
- import org.apache.hadoop.io.WritableComparable;
- import org.apache.hadoop.mapred.*;
- import org.apache.hadoop.mapred.lib.IdentityMapper;
- import org.apache.hadoop.mapred.lib.IdentityReducer;
- import org.apache.hadoop.mapred.lib.InputSampler;
- import org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
- import org.apache.hadoop.util.Tool;
- import org.apache.hadoop.util.ToolRunner;
- /**
- * This is the trivial map/reduce program that does absolutely nothing
- * other than use the framework to fragment and sort the input values.
- *
- * To run: bin/hadoop jar build/hadoop-examples.jar sort
- * [-m <i>maps</i>] [-r <i>reduces</i>]
- * [-inFormat <i>input format class</i>]
- * [-outFormat <i>output format class</i>]
- * [-outKey <i>output key class</i>]
- * [-outValue <i>output value class</i>]
- * [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>]
- * <i>in-dir</i> <i>out-dir</i>
- */
- public class Sort<K,V> extends Configured implements Tool {
- private RunningJob jobResult = null;
- static int printUsage() {
- System.out.println("sort [-m <maps>] [-r <reduces>] " +
- "[-inFormat <input format class>] " +
- "[-outFormat <output format class>] " +
- "[-outKey <output key class>] " +
- "[-outValue <output value class>] " +
- "[-totalOrder <pcnt> <num samples> <max splits>] " +
- "<input> <output>");
- ToolRunner.printGenericCommandUsage(System.out);
- return -1;
- }
- /**
- * The main driver for sort program.
- * Invoke this method to submit the map/reduce job.
- * @throws IOException When there is communication problems with the
- * job tracker.
- */
- public int run(String[] args) throws Exception {
- JobConf jobConf = new JobConf(getConf(), Sort.class);
- jobConf.setJobName("sorter");
- jobConf.setMapperClass(IdentityMapper.class);
- jobConf.setReducerClass(IdentityReducer.class);
- JobClient client = new JobClient(jobConf);
- ClusterStatus cluster = client.getClusterStatus();
- int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9);
- String sort_reduces = jobConf.get("test.sort.reduces_per_host");
- if (sort_reduces != null) {
- num_reduces = cluster.getTaskTrackers() *
- Integer.parseInt(sort_reduces);
- }
- Class<? extends InputFormat> inputFormatClass =
- SequenceFileInputFormat.class;
- Class<? extends OutputFormat> outputFormatClass =
- SequenceFileOutputFormat.class;
- Class<? extends WritableComparable> outputKeyClass = BytesWritable.class;
- Class<? extends Writable> outputValueClass = BytesWritable.class;
- List<String> otherArgs = new ArrayList<String>();
- InputSampler.Sampler<K,V> sampler = null;
- for(int i=0; i < args.length; ++i) {
- try {
- if ("-m".equals(args[i])) {
- jobConf.setNumMapTasks(Integer.parseInt(args[++i]));
- } else if ("-r".equals(args[i])) {
- num_reduces = Integer.parseInt(args[++i]);
- } else if ("-inFormat".equals(args[i])) {
- inputFormatClass =
- Class.forName(args[++i]).asSubclass(InputFormat.class);
- } else if ("-outFormat".equals(args[i])) {
- outputFormatClass =
- Class.forName(args[++i]).asSubclass(OutputFormat.class);
- } else if ("-outKey".equals(args[i])) {
- outputKeyClass =
- Class.forName(args[++i]).asSubclass(WritableComparable.class);
- } else if ("-outValue".equals(args[i])) {
- outputValueClass =
- Class.forName(args[++i]).asSubclass(Writable.class);
- } else if ("-totalOrder".equals(args[i])) {
- double pcnt = Double.parseDouble(args[++i]);
- int numSamples = Integer.parseInt(args[++i]);
- int maxSplits = Integer.parseInt(args[++i]);
- if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
- sampler =
- new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits);
- } else {
- otherArgs.add(args[i]);
- }
- } catch (NumberFormatException except) {
- System.out.println("ERROR: Integer expected instead of " + args[i]);
- return printUsage();
- } catch (ArrayIndexOutOfBoundsException except) {
- System.out.println("ERROR: Required parameter missing from " +
- args[i-1]);
- return printUsage(); // exits
- }
- }
- // Set user-supplied (possibly default) job configs
- jobConf.setNumReduceTasks(num_reduces);
- jobConf.setInputFormat(inputFormatClass);
- jobConf.setOutputFormat(outputFormatClass);
- jobConf.setOutputKeyClass(outputKeyClass);
- jobConf.setOutputValueClass(outputValueClass);
- // Make sure there are exactly 2 parameters left.
- if (otherArgs.size() != 2) {
- System.out.println("ERROR: Wrong number of parameters: " +
- otherArgs.size() + " instead of 2.");
- return printUsage();
- }
- FileInputFormat.setInputPaths(jobConf, otherArgs.get(0));
- FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.get(1)));
- if (sampler != null) {
- System.out.println("Sampling input to effect total-order sort...");
- jobConf.setPartitionerClass(TotalOrderPartitioner.class);
- Path inputDir = FileInputFormat.getInputPaths(jobConf)[0];
- inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf));
- Path partitionFile = new Path(inputDir, "_sortPartitioning");
- TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile);
- InputSampler.<K,V>writePartitionFile(jobConf, sampler);
- URI partitionUri = new URI(partitionFile.toString() +
- "#" + "_sortPartitioning");
- DistributedCache.addCacheFile(partitionUri, jobConf);
- DistributedCache.createSymlink(jobConf);
- }
- System.out.println("Running on " +
- cluster.getTaskTrackers() +
- " nodes to sort from " +
- FileInputFormat.getInputPaths(jobConf)[0] + " into " +
- FileOutputFormat.getOutputPath(jobConf) +
- " with " + num_reduces + " reduces.");
- Date startTime = new Date();
- System.out.println("Job started: " + startTime);
- jobResult = JobClient.runJob(jobConf);
- Date end_time = new Date();
- System.out.println("Job ended: " + end_time);
- System.out.println("The job took " +
- (end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
- return 0;
- }
- //input attr:/home/hadoop/rand/part-00000 /home/hadoop/rand-sort
- public static void main(String[] args) throws Exception {
- int res = ToolRunner.run(new Configuration(), new Sort(), args);
- System.exit(res);
- }
- /**
- * Get the last job that was run using this instance.
- * @return the results of the last job that was run
- */
- public RunningJob getResult() {
- return jobResult;
- }
- }
3.2在eclipse中设置参数:
/home/hadoop/rand/part-00000 /home/hadoop/rand-sort
其中/home/hadoop/rand/part-00000 表示输入路径,/home/hadoop/rand-sort表示输出路径
3.3数据来源
我们这里输入参数中的“/home/hadoop/rand/part-00000”是通过hadoop实例 RandomWriter 这个实例得到的。为了节省时间,hadoop实例 RandomWriter 中得到了两个文件,我们这里指使用了一个文件part-00000。如果要对两个文件都进行排序操作,那么输入路径只需要是目录即可。
4总结
本程序目前我测试只能在单机上执行,不能在集群上运行。即指可以run as ->java application,而不能run on hadoop,具体原因还没有找到,如果发现后续会更新本博客。
PS:2011-10-18
运行环境
1. run as java application
console中会输出信息
- Running on 1 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 1 reduces.
2.一个master和一个slave,run on hadoop
console输出信息
- Running on 1 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 1 reduces.
3.一台主机即做master又做slave,另外一台单独做slave
console输出信息
- 11/10/18 09:24:35 WARN conf.Configuration: DEPRECATED: hadoop-site.xml found in the classpath. Usage of hadoop-site.xml is deprecated. Instead use core-site.xml, mapred-site.xml and hdfs-site.xml to override properties of core-default.xml, mapred-default.xml and hdfs-default.xml respectively
- Running on 2 nodes to sort from hdfs://master:9000/home/hadoop/rand/part-00000 into hdfs://master:9000/home/hadoop/rand-sort with 3 reduces.
- Job started: Tue Oct 18 09:24:35 CST 2011
- 11/10/18 09:24:35 INFO mapred.FileInputFormat: Total input paths to process : 1
- 11/10/18 09:24:36 INFO mapred.JobClient: Running job: job_201110180923_0001
- 11/10/18 09:24:37 INFO mapred.JobClient: map 0% reduce 0%
- 11/10/18 09:24:50 INFO mapred.JobClient: map 6% reduce 0%
- 11/10/18 09:24:51 INFO mapred.JobClient: map 18% reduce 0%
- 11/10/18 09:24:53 INFO mapred.JobClient: map 25% reduce 0%
- 11/10/18 09:24:56 INFO mapred.JobClient: map 31% reduce 0%
- 11/10/18 09:25:01 INFO mapred.JobClient: map 43% reduce 0%
- 11/10/18 09:25:02 INFO mapred.JobClient: map 49% reduce 0%
- 11/10/18 09:25:04 INFO mapred.JobClient: map 50% reduce 2%
- 11/10/18 09:25:08 INFO mapred.JobClient: map 56% reduce 4%
- 11/10/18 09:25:09 INFO mapred.JobClient: map 62% reduce 6%
- 11/10/18 09:25:11 INFO mapred.JobClient: map 68% reduce 8%
- 11/10/18 09:25:12 INFO mapred.JobClient: map 75% reduce 8%
- 11/10/18 09:25:14 INFO mapred.JobClient: map 81% reduce 9%
- 11/10/18 09:25:20 INFO mapred.JobClient: map 87% reduce 9%
- 11/10/18 09:25:23 INFO mapred.JobClient: map 93% reduce 12%
- 11/10/18 09:25:26 INFO mapred.JobClient: map 93% reduce 13%
- 11/10/18 09:25:27 INFO mapred.JobClient: map 100% reduce 14%
- 11/10/18 09:25:29 INFO mapred.JobClient: map 100% reduce 15%
- 11/10/18 09:25:35 INFO mapred.JobClient: map 100% reduce 16%
- 11/10/18 09:25:36 INFO mapred.JobClient: map 100% reduce 17%
- 11/10/18 09:27:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000000_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:27:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:28:05 INFO mapred.JobClient: map 100% reduce 18%
- 11/10/18 09:32:51 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:32:55 INFO mapred.JobClient: map 93% reduce 18%
- 11/10/18 09:32:58 INFO mapred.JobClient: map 100% reduce 18%
- 11/10/18 09:33:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000001_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:33:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:33:11 INFO mapred.JobClient: map 100% reduce 19%
- 11/10/18 09:33:20 INFO mapred.JobClient: map 100% reduce 20%
- 11/10/18 09:38:19 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000005_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:38:19 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:38:23 INFO mapred.JobClient: map 93% reduce 20%
- 11/10/18 09:38:26 INFO mapred.JobClient: map 100% reduce 20%
- 11/10/18 09:38:35 INFO mapred.JobClient: map 100% reduce 21%
- 11/10/18 09:38:41 INFO mapred.JobClient: map 100% reduce 22%
- 11/10/18 09:43:10 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:43:14 INFO mapred.JobClient: map 93% reduce 22%
- 11/10/18 09:43:17 INFO mapred.JobClient: map 100% reduce 22%
- 11/10/18 09:43:35 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000006_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:43:35 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:43:51 INFO mapred.JobClient: map 100% reduce 24%
- 11/10/18 09:48:50 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000009_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:48:50 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:49:06 INFO mapred.JobClient: map 100% reduce 25%
- 11/10/18 09:53:21 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:53:25 INFO mapred.JobClient: map 93% reduce 25%
- 11/10/18 09:53:28 INFO mapred.JobClient: map 100% reduce 25%
- 11/10/18 09:53:37 INFO mapred.JobClient: map 100% reduce 26%
- 11/10/18 09:54:05 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000011_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:54:05 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:54:21 INFO mapred.JobClient: map 100% reduce 27%
- 11/10/18 09:59:20 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000015_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:59:20 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 09:59:36 INFO mapred.JobClient: map 100% reduce 52%
- 11/10/18 09:59:42 INFO mapred.JobClient: map 100% reduce 53%
- 11/10/18 09:59:45 INFO mapred.JobClient: map 100% reduce 54%
- 11/10/18 09:59:48 INFO mapred.JobClient: map 100% reduce 55%
- 11/10/18 09:59:51 INFO mapred.JobClient: map 100% reduce 56%
- 11/10/18 09:59:54 INFO mapred.JobClient: map 100% reduce 57%
- 11/10/18 09:59:57 INFO mapred.JobClient: map 100% reduce 58%
- 11/10/18 10:00:00 INFO mapred.JobClient: map 100% reduce 60%
- 11/10/18 10:00:03 INFO mapred.JobClient: map 100% reduce 61%
- 11/10/18 10:00:06 INFO mapred.JobClient: map 100% reduce 62%
- 11/10/18 10:00:09 INFO mapred.JobClient: map 100% reduce 63%
- 11/10/18 10:00:12 INFO mapred.JobClient: map 100% reduce 64%
- 11/10/18 10:00:15 INFO mapred.JobClient: map 100% reduce 65%
- 11/10/18 10:00:18 INFO mapred.JobClient: map 100% reduce 66%
- 11/10/18 10:00:21 INFO mapred.JobClient: map 100% reduce 67%
- 11/10/18 10:00:24 INFO mapred.JobClient: map 100% reduce 68%
- 11/10/18 10:00:27 INFO mapred.JobClient: map 100% reduce 69%
- 11/10/18 10:00:30 INFO mapred.JobClient: map 100% reduce 70%
- 11/10/18 10:00:33 INFO mapred.JobClient: map 100% reduce 71%
- 11/10/18 10:00:36 INFO mapred.JobClient: map 100% reduce 72%
- 11/10/18 10:00:39 INFO mapred.JobClient: map 100% reduce 73%
- 11/10/18 10:00:52 INFO mapred.JobClient: map 100% reduce 75%
- 11/10/18 10:03:41 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000007_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:03:45 INFO mapred.JobClient: map 93% reduce 75%
- 11/10/18 10:03:48 INFO mapred.JobClient: map 100% reduce 75%
- 11/10/18 10:08:34 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000003_1, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:08:34 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:08:50 INFO mapred.JobClient: map 100% reduce 76%
- 11/10/18 10:13:53 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000008_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:13:57 INFO mapred.JobClient: map 93% reduce 76%
- 11/10/18 10:14:00 INFO mapred.JobClient: map 100% reduce 76%
- 11/10/18 10:18:49 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000002_1, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:18:49 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:19:05 INFO mapred.JobClient: map 100% reduce 77%
- 11/10/18 10:24:09 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000010_0, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:24:13 INFO mapred.JobClient: map 93% reduce 77%
- 11/10/18 10:24:16 INFO mapred.JobClient: map 100% reduce 77%
- 11/10/18 10:29:04 INFO mapred.JobClient: Task Id : attempt_201110180923_0001_m_000004_1, Status : FAILED
- Too many fetch-failures
- 11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:29:04 WARN mapred.JobClient: Error reading task outputxuwei-laptop
- 11/10/18 10:29:20 INFO mapred.JobClient: map 100% reduce 89%
- 11/10/18 10:29:23 INFO mapred.JobClient: map 100% reduce 91%
- 11/10/18 10:29:26 INFO mapred.JobClient: map 100% reduce 92%
- 11/10/18 10:29:29 INFO mapred.JobClient: map 100% reduce 93%
- 11/10/18 10:29:32 INFO mapred.JobClient: map 100% reduce 94%
- 11/10/18 10:29:35 INFO mapred.JobClient: map 100% reduce 95%
- 11/10/18 10:29:38 INFO mapred.JobClient: map 100% reduce 96%
- 11/10/18 10:29:41 INFO mapred.JobClient: map 100% reduce 97%
- 11/10/18 10:29:44 INFO mapred.JobClient: map 100% reduce 98%
- 11/10/18 10:29:50 INFO mapred.JobClient: map 100% reduce 100%
- 11/10/18 10:29:52 INFO mapred.JobClient: Job complete: job_201110180923_0001
- 11/10/18 10:29:52 INFO mapred.JobClient: Counters: 18
- 11/10/18 10:29:52 INFO mapred.JobClient: Job Counters
- 11/10/18 10:29:52 INFO mapred.JobClient: Launched reduce tasks=4
- 11/10/18 10:29:52 INFO mapred.JobClient: Launched map tasks=32
- 11/10/18 10:29:52 INFO mapred.JobClient: Data-local map tasks=32
- 11/10/18 10:29:52 INFO mapred.JobClient: FileSystemCounters
- 11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_READ=1075141899
- 11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_READ=1077495458
- 11/10/18 10:29:52 INFO mapred.JobClient: FILE_BYTES_WRITTEN=2150285276
- 11/10/18 10:29:52 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1077290017
- 11/10/18 10:29:52 INFO mapred.JobClient: Map-Reduce Framework
- 11/10/18 10:29:52 INFO mapred.JobClient: Reduce input groups=102334
- 11/10/18 10:29:52 INFO mapred.JobClient: Combine output records=0
- 11/10/18 10:29:52 INFO mapred.JobClient: Map input records=102334
- 11/10/18 10:29:52 INFO mapred.JobClient: Reduce shuffle bytes=1031027235
- 11/10/18 10:29:52 INFO mapred.JobClient: Reduce output records=102334
- 11/10/18 10:29:52 INFO mapred.JobClient: Spilled Records=204668
- 11/10/18 10:29:52 INFO mapred.JobClient: Map output bytes=1074566657
- 11/10/18 10:29:52 INFO mapred.JobClient: Map input bytes=1077289249
- 11/10/18 10:29:52 INFO mapred.JobClient: Combine input records=0
- 11/10/18 10:29:52 INFO mapred.JobClient: Map output records=102334
- 11/10/18 10:29:52 INFO mapred.JobClient: Reduce input records=102334
- Job ended: Tue Oct 18 10:29:52 CST 2011
- The job took 3916 seconds.
本文转自xwdreamer博客园博客,原文链接:http://www.cnblogs.com/xwdreamer/archive/2011/10/17/2296956.html,如需转载请自行联系原作者