uva 10816 Travel in Desert(简单的好题~两种方法)

简介:

题意:

给出 一个图

点与点之间的路径上有两个权值 路径长度和温度

要求在所走路径中的温度的最大值最小的前提下 走最短路径

解题思路1:

首先用 最小生成树 的方法走出 最小瓶颈路 。把在这期间用到的全部温度小于 路径上最大温度 的边存下来,作为接下来求最短路径的图。

在新生成的图中求最短路径就可以;

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;

const int maxm = 10005;
const int maxn = 105;

struct Edge{
    int u,v;
    double dist,tm;
    void read(){
        scanf("%d%d%lf%lf",&u,&v,&tm,&dist);
        u--;v--;
    }
    bool operator<(const Edge et)const{
        if(tm != et.tm) return tm < et.tm;
        else return dist < et.dist;
    }
}e[maxm];
int n,m,s,t;
int parent[maxn];
vector<Edge> g[maxn];


void init(){
    scanf("%d%d",&s,&t);
    s--;t--;
    for(int i = 0; i < m; i++){
        e[i].read();
    }
    for(int i = 0; i < n; i++){
            g[i].clear();
    }
}
int find(int x){
    if(parent[x] == x) return x;
    else return parent[x] = find(parent[x]);
}


const int INF = 0x3f3f3f3f;
const int MAXNODE = 105;

struct Edge2 {
    int u, v;
    double dist;
    Edge2() {}
    Edge2(int u, int v, double dist) {
        this->u = u;
        this->v = v;
        this->dist = dist;
    }
};
struct HeapNode {
    double d;
    int u;
    HeapNode() {}
    HeapNode(double d, int u) {
        this->d = d;
        this->u = u;
    }
    bool operator < (const HeapNode& c) const {
        return d > c.d;
    }
};
struct Dijkstra {
    int n, m;
    vector<Edge2> edges;
    vector<int> g[MAXNODE];
    bool done[MAXNODE];
    double d[MAXNODE];
    int p[MAXNODE];

    void init(int tot) {
        n = tot;
        for (int i = 0; i < n; i++)
            g[i].clear();
        edges.clear();
    }

    void add_Edge(int u, int v, double dist) {
        edges.push_back(Edge2(u, v, dist));
        m = edges.size();
        g[u].push_back(m - 1);
    }

    void print(int s, int e) {//shun xu
        if (s == e) {
            printf("%d", e + 1);
            return;
        }
        print(s, edges[p[e]].u);
        printf(" %d", e + 1);
    }

    void print2(int s, int e) {//ni xu
        if (s == e) {
            printf("%d", e + 1);
            return;
        }
        printf("%d ", e + 1);
        print2(s, edges[p[e]].u);
    }

    void dijkstra(int s) {
        priority_queue<HeapNode> Q;
        for (int i = 0; i < n; i++) d[i] = INF*1.0;
        d[s] = 0.0;
        memset(done, false, sizeof(done));
        Q.push(HeapNode(0, s));
        while (!Q.empty()) {
            HeapNode x = Q.top(); Q.pop();
            int u = x.u;
            if (done[u]) continue;
            done[u] = true;
            for (int i = 0; i < g[u].size(); i++) {
                Edge2& e = edges[g[u][i]];
                if (d[e.v] > d[u] + e.dist) {
                    d[e.v] = d[u] + e.dist;
                    p[e.v] = g[u][i];
                    Q.push(HeapNode(d[e.v], e.v));
                }
            }
        }
    }
} graph;

void solve(){
//    printf("...\n");
    double ans = 0;
    sort(e,e+m);

//    for(int i = 0; i < m; i++){
//        printf("%.1lf %.1lf %d %d\n",e[i].dist,e[i].tm,e[i].u,e[i].v);
//    }
    for(int i = 0; i < n; i++) parent[i] = i;

    double max_tm = 500.0;
    graph.init(n);
    for(int i = 0; i < m; i++){
        if(e[i].tm > max_tm) break;
        graph.add_Edge(e[i].u,e[i].v,e[i].dist);
        graph.add_Edge(e[i].v,e[i].u,e[i].dist);

        int pu = find(e[i].u);
        int pv = find(e[i].v);
        if(pu == pv) continue;
        parent[pu] = pv;

        if(find(s) == find(t)){
            max_tm = e[i].tm;
        }
    }

    graph.dijkstra(s);
    graph.print(s,t);
    printf("\n");
    printf("%.1lf %.1lf\n",graph.d[t],max_tm);

}
int main(){
    while(scanf("%d%d",&n,&m) != EOF){
        init();
        solve();
    }
    return 0;
}

解题思路二:

把原图存下来,然后二分温度,再把全部小于温度mid的边拿出来构成一个新图,然后继续dijkstra求最短路,有成功和不成功两种结果,找到能成功的最小温度就可以

code

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;

const int MAXNODE = 105;
const int MAXEDGE = 20005;

typedef double Type;
const Type INF = 0x3f3f3f3f;

struct Edge {
    int u, v;
    Type dist, d;
    Edge() {}
    Edge(int u, int v, Type dist, Type d = 0) {
        this->u = u;
        this->v = v;
        this->dist = dist;
        this->d = d;
    }
    void read() {
        scanf("%d%d%lf%lf", &u, &v, &d, &dist);
        u--; v--;
    }
};

struct HeapNode {
    Type d;
    int u;
    HeapNode() {}
    HeapNode(Type d, int u) {
        this->d = d;
        this->u = u;
    }
    bool operator < (const HeapNode& c) const {
        return d > c.d;
    }
};

int n, m, s, t;

struct Dijkstra {
    int n, m;
    Edge edges[MAXEDGE];
    int first[MAXNODE];
    int next[MAXEDGE];
    bool done[MAXNODE];
    Type d[MAXNODE];
    int p[MAXNODE];

    void init(int n) {
        this->n = n;
        memset(first, -1, sizeof(first));
        m = 0;
    }

    void add_Edge(int u, int v, Type dist) {
        edges[m] = Edge(u, v, dist);
        next[m] = first[u];
        first[u] = m++;
    }

    void add_Edge(Edge e) {
        edges[m] = e;
        next[m] = first[e.u];
        first[e.u] = m++;
    }
    void print(int e) {//shun xu
        if (p[e] == -1) {
            printf("%d", e + 1);
            return;
        }
        print(edges[p[e]].u);
        printf(" %d", e + 1);
    }

    void print2(int e) {//ni xu
        if (p[e] == -1) {
            printf("%d\n", e + 1);
            return;
        }
        printf("%d ", e + 1);
        print2(edges[p[e]].u);
    }

    bool dijkstra(int s, int t) {
        priority_queue<HeapNode> Q;
        for (int i = 0; i < n; i++) d[i] = INF;
        d[s] = 0;
        p[s] = -1;
        memset(done, false, sizeof(done));
        Q.push(HeapNode(0, s));
        while (!Q.empty()) {
            HeapNode x = Q.top(); Q.pop();
            int u = x.u;
            if (u == t)
                return true;
            if (done[u]) continue;
            done[u] = true;
            for (int i = first[u]; i != -1; i = next[i]) {
                Edge& e = edges[i];
                if (d[e.v] > d[u] + e.dist) {
                    d[e.v] = d[u] + e.dist;
                    p[e.v] = i;
                    Q.push(HeapNode(d[e.v], e.v));
                }
            }
        }
        return false;
    }
} gao;

Edge e[MAXEDGE];

bool judge(double mid) {
    gao.init(n);
    for (int i = 0; i < m; i++) {
        if (e[i].d > mid) continue;
        gao.add_Edge(e[i]);
        gao.add_Edge(Edge(e[i].v, e[i].u, e[i].dist, e[i].d));
    }
    if (gao.dijkstra(s, t)) return true;
    return false;
}

int main() {
    while (~scanf("%d%d", &n, &m)) {
        scanf("%d%d", &s, &t);
        s--; t--;
        for (int i = 0; i < m; i++)
            e[i].read();
        double l = 0, r = 50, mid;
        while (r - l > 1e-8) {
            mid = (l + r) / 2;
            if (judge(mid)) r = mid;
            else l = mid;
        }
        if (judge(r)) {
            gao.print(t); printf("\n");
            printf("%.1lf %.1lf\n", gao.d[t], mid);
        }
    }
    return 0;
}

二分在非常多情况下都是非常好用的一种方法~






本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5417952.html,如需转载请自行联系原作者

相关文章
|
算法
hdoj 3732 Ahui Writes Word (多重背包)
来看题目吧,可能有100000个单词,然后只有1000ms,但看包的大小,有10000,这样只能允许nlog(n)的算法,还有,每个单词的价值和花费都很小(不大于十),如果不考虑单词的不同,只考虑价值和花费只有最多100种东西,但如果把这些按多重背包的方法来计算依旧会超时,很容易想到和之前01背包的时间复杂度是一样的。
52 0
|
机器学习/深度学习 C++
【PAT甲级 - C++题解】1128 N Queens Puzzle
【PAT甲级 - C++题解】1128 N Queens Puzzle
79 1
|
机器学习/深度学习 Windows
The 2022 ICPC Asia Regionals Online Contest (I)-D题题解(DFS暴搜+剪枝+打表去重+二分)
时间复杂度:O(227 + nlog(n) + T * log(n)),227是DFS打表的时间,nlog(n)是vertor排序的时间,T*log(n)是询问次数和二分搜答案的时间。(如果算错了,评论或者私信指出谢谢)
177 0
The 2022 ICPC Asia Regionals Online Contest (I)-D题题解(DFS暴搜+剪枝+打表去重+二分)
|
人工智能 BI
[UVA 1599] Ideal Path | 细节最短路
Description New labyrinth attraction is open in New Lostland amusement park. The labyrinth consists of n rooms connected by m passages. Each passage is colored into some color ci .
213 0
|
算法 关系型数据库 MySQL
ARTS-1-算法练习-跳台阶
ARTS-1-算法练习-跳台阶
81 0
UVa 11292 - Dragon of Loowater(排序贪心)
UVa 11292 - Dragon of Loowater(排序贪心)
104 0

热门文章

最新文章