《R语言入门》矩阵元素定义及筛选

简介: 《R语言入门》目录: 如何在Windows下安装R语言编程环境矩阵元素定义及筛选 和向量一样,矩阵也可以做筛选。但是需要注意一下语法上的不同。下面是一个简单的例子: 以下代码用户定义一个矩阵元素变量“si”,ncol=3(三列),byrow = TRUE(数据按行输入) 使用“ 1,]注意语句判断条件后逗号和没有逗号的区别。

《R语言入门》目录:
如何在Windows下安装R语言编程环境

矩阵元素定义及筛选
和向量一样,矩阵也可以做筛选。但是需要注意一下语法上的不同。下面是一个简单的例子:
这里写图片描述
以下代码用户定义一个矩阵元素变量“si”,ncol=3(三列),byrow = TRUE(数据按行输入)
使用“<-”小于号减号作为操作符

si <- matrix(c(1, 1, 1,
                2, 3, 1,
                3, 4, 1,
                5, 1, 3),
              ncol = 3, byrow = TRUE)

以下代码返回匹配结果:

ret <- si[,2] == 1

中括号中的“,2”逗号2代表第二列,可以使用等于“==”,大于等于“>=”,大于“>”……等操作符。
这里写图片描述
以下语句可以对矩阵进行筛选:

si[si[,2] > 1,]

注意语句判断条件后逗号和没有逗号的区别。

目录
相关文章
|
机器学习/深度学习 数据采集 算法
全网最快入门———R语言机器学习实战篇8《主成分分析》
R 语言是为数学研究工作者设计的一种数学编程语言,主要用于统计分析、绘图、数据挖掘。 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
全网最快入门———R语言机器学习实战篇8《主成分分析》
|
机器学习/深度学习
R语言模型评估:深入理解混淆矩阵与ROC曲线
【9月更文挑战第2天】混淆矩阵和ROC曲线是评估分类模型性能的两种重要工具。混淆矩阵提供了模型在不同类别上的详细表现,而ROC曲线则通过综合考虑真正率和假正率来全面评估模型的分类能力。在R语言中,利用`caret`和`pROC`等包可以方便地实现这两种评估方法,从而帮助我们更好地理解和选择最适合当前任务的模型。
|
并行计算 IDE 数据挖掘
R语言入门:如何安装与配置环境
【8月更文挑战第27天】通过本文的指南,你应该能够顺利安装并配置R语言环境,以便进行数据分析和编程任务。R语言以其强大的功能和灵活的扩展性,成为数据分析领域的重要工具。希望本文能够帮助你入门R语言,并激发你进一步学习和探索的兴趣。随着经验的积累,你将能够充分利用R语言的优势,提高工作效率和数据处理能力。
|
数据采集 机器学习/深度学习 数据可视化
使用R语言进行统计分析:入门与实践
【8月更文挑战第10天】通过本文,我们介绍了使用R语言进行统计分析的基本流程,包括数据加载、数据清洗、描述性统计、假设检验以及数据可视化等关键步骤。R语言以其强大的功能和丰富的包资源,为数据分析师和科学家提供了强大的工具。随着你对R语言的
|
数据可视化 数据挖掘 项目管理
R 语言入门与介绍
R 语言入门与介绍
222 0
|
索引
R语言中的数据结构----矩阵
R语言中的数据结构----矩阵
214 3
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
机器学习/深度学习 搜索推荐 数据挖掘
R语言矩阵特征值分解(谱分解)和奇异值分解(SVD)特征向量分析有价证券数据
R语言矩阵特征值分解(谱分解)和奇异值分解(SVD)特征向量分析有价证券数据
|
存储 数据处理 数据库
R语言入门:基础语法和数据结构
【4月更文挑战第25天】本文为R语言初学者提供入门指南,介绍R语言起源、安装配置、基本语法、数据类型和结构、数据操作以及统计和图形绘制。R语言是强大的统计分析工具,拥有丰富数据处理功能和活跃社区。通过学习变量赋值、控制结构、向量、矩阵、数组、数据框和列表,以及数据导入导出、筛选修改,可奠定R语言基础。掌握基础后,可进一步探索其在统计计算和图形绘制中的应用。
321 2
|
机器学习/深度学习 数据可视化
R语言逻辑回归、决策树、随机森林、神经网络预测患者心脏病数据混淆矩阵可视化(下)
R语言逻辑回归、决策树、随机森林、神经网络预测患者心脏病数据混淆矩阵可视化