Hadoop - Zeppelin 使用心得

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

1.概述

  在编写 Flink,Spark,Hive 等相关作业时,要是能快速的将我们所编写的作业能可视化在我们面前,是件让人兴奋的时,如果能带上趋势功能就更好了。今天,给大家介绍这么一款工具。它就能满足上述要求,在使用了一段时间之后,这里给大家分享以下使用心得。

2.How to do

  首先,我们来了解一下这款工具的背景及用途。Zeppelin 目前已托管于 Apache 基金会,但并未列为顶级项目,可以在其公布的 官网访问。它提供了一个非常友好的 WebUI 界面,操作相关指令。它可以用于做数据分析和可视化。其后面可以接入不同的数据处理引擎。包括 Flink,Spark,Hive 等。支持原生的 Scala,Shell,Markdown 等。

2.1 Install

  对于 Zeppelin 而言,并不依赖 Hadoop 集群环境,我们可以部署到单独的节点上进行使用。首先我们使用以下地址获取安装包:

http://zeppelin.incubator.apache.org/download.html
  这里,有2种选择,其一,可以下载原文件,自行编译安装。其二,直接下载二进制文件进行安装。这里,为了方便,笔者直接使用二进制文件进行安装使用。 这里有些参数需要进行配置,为了保证系统正常启动,确保的 zeppelin.server.port 属性的端口不被占用,默认是8080,其他属性大家可按需配置即可。[ 配置链接

2.2 Start/Stop

  在完成上述步骤后,启动对应的进程。定位到 Zeppelin 安装目录的bin文件夹下,使用以下命令启动进程:



./zeppelin-daemon.sh start

  若需要停止,可以使用以下命令停止进程:



./zeppelin-daemon.sh stop

  另外,通过阅读 zeppelin-daemon.sh 脚本的内容,可以发现,我们还可以使用相关重启,查看状态等命令。内容如下:

case "${1}" in
  start)
    start
    ;;
  stop)
    stop
    ;;
  reload)
    stop
    start
    ;;
  restart)
    stop
    start
    ;;
  status)
    find_zeppelin_process
    ;;
  *)
    echo ${USAGE}

3.How to use

  在启动相关进程后,可以使用以下地址在浏览器中访问:



http://<Your_<IP/Host>:Port>

  启动之后的界面如下所示:

  该界面罗列出插件绑定项。如图中的 spark,md,sh 等。那我如何使用这些来完成一些工作。在使用一些数据引擎时,如 Flink,Spark,Hive 等,是需要配置对应的连接信息的。在 Interpreter 栏处进行配置。这里给大家列举一些配置示例:

3.1 Flink

  可以找到 Flink 的配置项,如下图所示:

 

  然后指定对应的 IP 和地址即可。

3.2 Hive

  这里 Hive 配置需要指向其 Thrift 服务地址,如下图所示:

  另外,其他的插件,如 Spark,Kylin,phoenix等配置类似,配置完成后,记得点击 “restart” 按钮。

3.3 Use md and sh

  下面,我们可以创建一个 Notebook 来使用,我们拿最简单的 Shell 和 Markdown 来演示,如下图所示:

3.4 SQL

  当然,我们的目的并不是仅仅使用 Shell 和 Markdown,我们需要能够使用 SQL 来获取我们想要的结果。

3.4.1 Spark SQL

  下面,我们使用 Spark SQL 去获取想要的结果。如下图所示:

  这里,可以将结果以不同的形式来可视化,量化,趋势,一目了然。

3.4.2 Hive SQL

  另外,可以使用动态格式来查询分区数据,以"${partition_col=20160101,20160102|20160103|20160104|20160105|20160106}"的格式进行表示。如下图所示:

3.5 Video Guide

  另外,官方也给出了一个快速指导的入门视频,观看地址:[入口]

4.总结

  在使用的过程当中,有些地方需要注意,必须在编写 Hive SQL 时,%hql 需要替换为 %hive.sql 的格式;另外,在运行 Scala 代码时,如果出现以下异常,如下图所示:

  解决方案,在 zeppelin-env.sh 文件中添加以下内容:

export ZEPPELIN_MEM=-Xmx4g

  该 BUG 在 0.5.6 版本得到修复,参考码:[ZEPPELIN-305]

5.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
分布式计算 资源调度 Hadoop
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(下)
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(下)
126 0
|
分布式计算 资源调度 Hadoop
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(上)
Hadoop学习指南:探索大数据时代的重要组成——Hadoop运行模式(上)
|
分布式计算 Hadoop Java
Hadoop伪分布教程
本文讲解了在CentOS下如何搭建大数据平台Hadoop,采用了简单的伪分布方式
Hadoop伪分布教程
|
分布式计算 Hadoop Java
三十二、基于Hadoop伪分布式运行Hadoop自带wordcount案例
三十二、基于Hadoop伪分布式运行Hadoop自带wordcount案例
三十二、基于Hadoop伪分布式运行Hadoop自带wordcount案例
|
SQL 存储 分布式计算
Hadoop生态之Hive(完结篇)
Hadoop生态之Hive(完结篇)
591 0
|
分布式计算 数据可视化 Hadoop
Hadoop 入门教程
Hadoop 入门教程
308 0
Hadoop 入门教程
|
存储 分布式计算 数据中心
常见的七种Hadoop和Spark项目案例
大数据中比较火爆的Hadoop、Spark和Storm,最常见的七种项目你们是否已经了解到位了呢,下面一起了解一下吧 一、数据整合 称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析。
5860 0
|
存储 分布式计算 资源调度
Hadoop笔记
本文是学习《Hadoop权威指南》时所作的笔记,用于加深理解。
1891 0
|
SQL 分布式计算 Shell

相关实验场景

更多