[LeetCode] Design Tic-Tac-Toe 设计井字棋游戏

简介:

Design a Tic-tac-toe game that is played between two players on a n x n grid.

You may assume the following rules:

A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board.

TicTacToe toe = new TicTacToe(3);

toe.move(0, 0, 1); -> Returns 0 (no one wins)
|X| | |
| | | | // Player 1 makes a move at (0, 0).
| | | |

toe.move(0, 2, 2); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 2 makes a move at (0, 2).
| | | |

toe.move(2, 2, 1); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 1 makes a move at (2, 2).
| | |X|

toe.move(1, 1, 2); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 2 makes a move at (1, 1).
| | |X|

toe.move(2, 0, 1); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 1 makes a move at (2, 0).
|X| |X|

toe.move(1, 0, 2); -> Returns 0 (no one wins)
|X| |O|
|O|O| | // Player 2 makes a move at (1, 0).
|X| |X|

toe.move(2, 1, 1); -> Returns 1 (player 1 wins)
|X| |O|
|O|O| | // Player 1 makes a move at (2, 1).
|X|X|X|
Follow up:
Could you do better than O(n2) per move() operation?

Hint:

Could you trade extra space such that move() operation can be done in O(1)?
You need two arrays: int rows[n], int cols[n], plus two variables: diagonal, anti_diagonal.

CareerCup上的原题,请参见我之前的博客17.2 Tic Tac Toe。我们首先来O(n2)的解法,这种方法的思路很straightforward,就是建立一个nxn大小的board,其中0表示该位置没有棋子,1表示玩家1放的子,2表示玩家2。那么棋盘上每增加一个子,我们都扫描当前行列,对角线,和逆对角线,看看是否有三子相连的情况,有的话则返回对应的玩家,没有则返回0,参见代码如下:

解法一:

class TicTacToe {
public:
    /** Initialize your data structure here. */
    TicTacToe(int n) {
        board.resize(n, vector<int>(n, 0));   
    }

    int move(int row, int col, int player) {
        board[row][col] = player;
        int i = 0, j = 0, n = board.size();
        for (j = 1; j < n; ++j) {
            if (board[row][j] != board[row][j - 1]) break;
        }
        if (j == n) return player;
        for (i = 1; i < n; ++i) {
            if (board[i][col] != board[i - 1][col]) break;
        }
        if (i == n) return player;
        if (row == col) {
            for (i = 1; i < n; ++i) {
                if (board[i][i] != board[i - 1][i - 1]) break;
            }
            if (i == n) return player;
        }
        if (row + col == n - 1) {
            for (i = 1; i < n; ++i) {
                if (board[n - i - 1][i] != board[n - i][i - 1]) break;
            }
            if (i == n) return player;
        }
        return 0;
    }
    
private:
    vector<vector<int>> board;
};

Follow up中让我们用更高效的方法,那么根据提示中的,我们建立一个大小为n的一维数组rows和cols,还有变量对角线diag和逆对角线rev_diag,这种方法的思路是,如果玩家1在第一行某一列放了一个子,那么rows[0]自增1,如果玩家2在第一行某一列放了一个子,则rows[0]自减1,那么只有当rows[0]等于n或者-n的时候,表示第一行的子都是一个玩家放的,则游戏结束返回该玩家即可,其他各行各列,对角线和逆对角线都是这种思路,参见代码如下:

解法二:

class TicTacToe {
public:
    /** Initialize your data structure here. */
    TicTacToe(int n): rows(n), cols(n), N(n), diag(0), rev_diag(0) {}

    int move(int row, int col, int player) {
        int add = player == 1 ? 1 : -1;
        rows[row] += add; 
        cols[col] += add;
        diag += (row == col ? add : 0);
        rev_diag += (row == N - col - 1 ? add : 0);
        return (abs(rows[row]) == N || abs(cols[col]) == N || abs(diag) == N || abs(rev_diag) == N) ? player : 0;
    }

private:
    vector<int> rows, cols;
    int diag, rev_diag, N;
};

本文转自博客园Grandyang的博客,原文链接:设计井字棋游戏[LeetCode] Design Tic-Tac-Toe ,如需转载请自行联系原博主。

相关文章
|
8月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
323 15
|
算法
Leetcode第45题(跳跃游戏II)
这篇博客文章讨论了如何使用贪心算法解决LeetCode第45题“跳跃游戏II”,目的是找到使用最少跳跃次数到达数组末尾的策略。
248 8
Leetcode第45题(跳跃游戏II)
|
8月前
|
算法 Go
【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)
本篇解析详细讲解了 LeetCode 热题 55——跳跃游戏(Jump Game)。通过判断是否能从数组起点跳至终点,介绍了两种高效解法:贪心算法和反向思维。贪心法通过维护最远可达位置 `maxReach` 实现一次遍历,时间复杂度 O(n),空间复杂度 O(1);反向法则从终点回溯,判断是否可到达起点。两者均简洁高效,适合面试使用。延伸题目如 LeetCode 45 进一步提升挑战。
238 7
LeetCode第55题跳跃游戏
LeetCode第55题"跳跃游戏"的解题方法,通过记录当前最远可达到的位置并判断每个位置是否可达以及能否到达末尾,有效解决了跳跃至数组末尾的可行性问题。
LeetCode第55题跳跃游戏
Leetcode第55题(跳跃游戏)
LeetCode第55题“跳跃游戏”要求判断在一个非负整数数组中,从第一个位置出发,是否能够到达最后一个位置,其中每个位置的元素代表可跳跃的最大长度。
106 0
|
Python
【Leetcode刷题Python】174. 地下城游戏
LeetCode 174题 "地下城游戏" 的Python解决方案,使用动态规划算法计算骑士从左上角到右下角拯救公主所需的最低初始健康点数。
144 3
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
186 1
|
算法 索引 Python
【Leetcode刷题Python】55. 跳跃游戏
解决LeetCode "跳跃游戏"问题的Python实现代码,使用了贪心算法的思路。代码中初始化最远可到达位置 max_k,并遍历数组 nums,通过更新 max_k 来记录每次能跳到的最远位置,如果在任何时刻 max_k 大于或等于数组的最后一个索引,则返回 True,表示可以到达数组的末尾;如果当前索引 i 超出了 max_k,则返回 False,表示无法继续前进。时间复杂度为 O(n),空间复杂度为 O(1)。
154 1
LeetCode第45题跳跃游戏 II
LeetCode第45题"跳跃游戏 II"的解题方法,通过一次循环和选择每个位置的最大可跳距离,有效减少了跳跃次数,简化了问题。
|
算法
力扣经典150题第三十八题:生命游戏
力扣经典150题第三十八题:生命游戏
182 0

热门文章

最新文章