Hadoop - Kylin On OLAP

简介:

1.概述

  Apache Kylin是一个开源的分布式分析引擎,提供SQL接口并且用于OLAP业务于Hadoop的大数据集上,该项目由eBay贡献于Apache。

2.What is Kylin

  在使用一种模型,我们得知道她是干什么的,那么首先来看看Kylin的特性,其内容如下所示:

  • 可扩展超快的OLAP引擎:Kylin是为减少在Hadoop上百亿级别数据查询延迟而设计的。
  • Hadoop ANSI SQL接口:Kylin为Hadoop提供标准的SQL,其支持大部分查询功能。
  • 出色的交互式查询能力:通过Kylin,使用者可以于Hadoop数据进行亚秒级交互,在同样的数据集上提供比Hive更好的性能。
  • 多维度Cube:用户能够在Kylin里为百亿以上的数据集定义数据模型并构建Cube。
  • 和BI工具无缝整合:Kylin提供与BI工具,如商业化的Tableau。另外,根据官方提供的信息也在后续逐步提供对其他工具的支持。
  • 其他特性:
    • 对Job的管理和监控
    • 压缩和编码的支持
    • 增量更新Cube
    • 利用HBase Coprocessor去查询
    • 基于HyperLogLog的Distinct Count近似算法
    • 友好的Web界面用于管理、监控和使用Cube
    • 项目及Cube级别的访问控制安全
    • 支持LDAP

3.ECOSYSTEM

  Kylin有其自己的生态圈,如下图所示:

  从上图中,我们可以看到,Kylin的核心包含:Kylin OLAP引擎基础框架,Metadata引擎,查询引擎,Job引擎以及存储引擎等等,同时还包括REST服务器以响应客户端请求。另外,还扩展支持额外 功能和特性的插件,同时整合与调度系统、ETL、监控等生命周期管理系统。在Kylin核心之上扩展的第三方用户界面,ODBC和JDBC驱动用以支持不 同的工具和产品,如:Tableau。

4.Architecture

  Kylin的架构概述图如下所示:

  图中的执行流程很清楚,客户端(REST API或JDBC/ODBC)发送SQL请求,将其交给Kylin的执行引擎去处理,Kylin去拉去对应的数据来做处理,并返回处理结果,这里 Kylin需要依赖HBase。复杂的事情,Kylin的引擎都给我们处理了,我们只需要负责去编写我们的业务SQL。

5.How TO Works

  在Kylin中,我们可以处理三维的业务查询,如下图所示:

  在明白了业务处理方向,其生态群和架构。我们要如何去集成该系统到Hadoop集群?关于Kylin的集成过程是比较方便的,Kylin需要Hadoop、Hive、HBase、JDK,另外,对版本也是有要求的。本版要求如下:

  • Hadoop:2.4 - 2.7
  • Hive:0.13 - 0.14
  • HBase:0.98(这里若是选择Kylin-1.2,需要用到HBase-1.1+以上)
  • JDK1.7+

  另外,安装Kylin步骤也是比较简单的,步骤如下所示:

  • 下载最新的安装包,地址如下:[Kylin.tar.gz
  • 设置KYLIN_HOME环境变量
  • 确保用户有权限去访问Hadoop、Hive和HBase,如果不确定的话,我们可以在安装包的bin目录下运行check-env.sh脚本,如果我们有问题的话,她会打印详细的信息。
  • 最后,我们可以通过kylin.sh start去启动Kylin,或者使用kylin.sh stop去停止Kylin

  在Kylin启动之后,我们可以通过输入http://node_hostname:7070/kylin去访问Kylin,登录默认用户名和密码为:ADMIN/KYLIN

  预览截图如下所示:

  另外,我们可以通过JDBC去操作,代码片段如下所示:

Driver driver = (Driver) Class.forName("org.apache.kylin.jdbc.Driver").newInstance();
Properties info = new Properties();
info.put("user", "ADMIN");
info.put("password", "KYLIN");
Connection conn = driver.connect("jdbc:kylin://dn1:7070/kylin_project_name", info);
Statement state = conn.createStatement();
ResultSet resultSet = state.executeQuery("select * from test_table");
while (resultSet.next()) {
  assertEquals("foo", resultSet.getString(1));
  assertEquals("bar", resultSet.getString(2));
  assertEquals("tool", resultSet.getString(3));
}

6.总结

  在使用Kylin时,我们有必要去首先熟悉其架构,这能让我们更加熟悉其应用场景和业务场景。在集成和使用的过程当中会遇到一些问题,我们可以分析其异常日志,然后利用搜索引擎得到解决。关于Kylin的详细使用,大家可以参考官方撰写的文档。

7.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
SQL OLAP 数据可视化
Saiku_学习_03_Saiku+Kylin构建多维分析OLAP平台
一、技术选型 参见:Saiku+Kylin多维分析平台探索   1.saiku Saiku 作为分析平台,提供可视化的操作,能方便的对数据进行查询、分析,并提供图形化显示   2.kylin Kylin 作为分析引擎,根据空间换时间的思想,对数据进行预计算,从而提供极高的查询性能,并且提供 ANSI SQL 接口,可以极大程度满足日常查询需求。
1966 0
|
SQL 分布式计算 监控
|
7月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
4月前
|
存储 人工智能 OLAP
AI Agent越用越笨?阿里云AnalyticDB「AI上下文工程」一招破解!
AI上下文工程是优化大模型交互的系统化框架,通过管理指令、记忆、知识库等上下文要素,解决信息缺失、长度溢出与上下文失效等问题。依托AnalyticDB等技术,实现上下文的采集、存储、组装与调度,提升AI Agent的准确性与协同效率,助力企业构建高效、稳定的智能应用。
|
6月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
5月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
553 0
|
7月前
|
存储 人工智能 关系型数据库
从“听指令”到“当参谋”,阿里云AnalyticDB GraphRAG如何让AI开窍
阿里云瑶池旗下的云原生数据仓库 AnalyticDB PostgreSQL 版 GraphRAG 技术,创新融合知识图谱动态推理+向量语义检索,通过实体关系映射与多跳路径优化,构建可应对复杂场景的决策引擎。本文将通过家电故障诊断和医疗预问诊两大高价值场景,解析其如何实现从“被动应答”到“主动决策”的跨越。

热门文章

最新文章