Bezier曲线原理及实现代码(c++)

简介:

Bezier曲线原理及实现代码(c++)  

2009-06-30 18:50:09|  分类: 数据结构与算法|字号 订阅

 
 

       一、原理:

       贝塞尔曲线于1962年,由法国工程师皮埃尔·贝塞尔Pierre Bézier)所广泛发表,他运用贝塞尔曲线来为汽车的主体进行设计。贝塞尔曲线最初由 Paul de Casteljau 于1959年运用 de Casteljau 算法开发,以稳定数值的方法求出贝塞尔曲线。

线性贝塞尔曲线

给定点 P0P1,线性贝塞尔曲线只是一条两点之间的直线。这条线由下式给出:

mathbf{B}(t)=mathbf{P}_0 + (mathbf{P}_1-mathbf{P}_0)t=(1-t)mathbf{P}_0 + tmathbf{P}_1 mbox{ , } t in [0,1]

且其等同于线性插值

 

二次方贝塞尔曲线的路径由给定点 P0P1P2 的函数 B(t) 追踪:

mathbf{B}(t) = (1 - t)^{2}mathbf{P}_0 + 2t(1 - t)mathbf{P}_1 + t^{2}mathbf{P}_2 mbox{ , } t in [0,1]

TrueType 字型就运用了以贝塞尔样条组成的二次贝塞尔曲线。

P0P1P2P3 四个点在平面或在三维空间中定义了三次方贝塞尔曲线。曲线起始于 P0 走向 P1,并从 P2 的方向来到 P3。一般不会经过 P1 或 P2;这两个点只是在那里提供方向资讯。 P0 和 P1 之间的间距,决定了曲线在转而趋进 P3 之前,走向 P2 方向的“长度有多长”。

曲线的参数形式为:

mathbf{B}(t)=mathbf{P}_0(1-t)^3+3mathbf{P}_1t(1-t)^2+3mathbf{P}_2t^2(1-t)+mathbf{P}_3t^3 mbox{ , } t in [0,1]

现代的成象系统,如 PostScriptAsymptote 和 Metafont,运用了以贝塞尔样条组成的三次贝塞尔曲线,用来描绘曲线轮廓。

一般化

 

 

 

 

P0P1、…、Pn,其贝塞尔曲线即

mathbf{B}(t)=sum_{i=0}^n {nchoose i}mathbf{P}_i(1-t)^{n-i}t^i =mathbf{P}_0(1-t)^n+{nchoose 1}mathbf{P}_1(1-t)^{n-1}t+cdots+mathbf{P}_nt^n mbox{ , } t in [0,1]

例如 

mathbf{B}(t)=mathbf{P}_0(1-t)^5+5mathbf{P}_1t(1-t)^4+10mathbf{P}_2t^2(1-t)^3+10mathbf{P}_3t^3(1-t)^2+5mathbf{P}_4t^4(1-t)+mathbf{P}_5t^5 mbox{ , } t in [0,1]

如上公式可如下递归表达: 用 mathbf{B}_{mathbf{P}_0mathbf{P}_1ldotsmathbf{P}_n} 表示由点 P0P1、…、Pn 所决定的贝塞尔曲线。则

mathbf{B}(t) = mathbf{B}_{mathbf{P}_0mathbf{P}_1ldotsmathbf{P}_n}(t) = (1-t)mathbf{B}_{mathbf{P}_0mathbf{P}_1ldotsmathbf{P}_{n-1}}(t) + tmathbf{B}_{mathbf{P}_1mathbf{P}_2ldotsmathbf{P}_n}(t)

用平常话来说, 阶贝塞尔曲线之间的插值。

 

一些关于参数曲线的术语,有

mathbf{B}(t) = sum_{i=0}^n mathbf{P}_imathbf{b}_{i,n}(t),quad tin[0,1]

即多项式

mathbf{b}_{i,n}(t) = {nchoose i} t^i (1-t)^{n-i},quad i=0,ldots n

又称作 n 阶的伯恩斯坦基底多项式,定义 00 = 1。

点 Pi 称作贝塞尔曲线的控制点多边形以带有线的贝塞尔点连接而成,起始于 P0并以 Pn 终止,称作贝塞尔多边形(或控制多边形)。贝塞尔多边形的凸包(convex hull)包含有贝塞尔曲线。

 

 
 

 

线性贝塞尔曲线函数中的 t 会经过由 P0 至P1 的 B(t) 所描述的曲线。例如当 t=0.25时,B(t) 即一条由点 P0 至 P1 路径的四分之一处。就像由 0 至 1 的连续 tB(t) 描述一条由 P0 至 P1 的直线。

线性贝塞尔曲线演示动画,t in [0,1]

 

为建构二次贝塞尔曲线,可以中介点 Q0 和 Q1 作为由 0 至 1 的 t

  • 由 P0 至 P1 的连续点 Q0,描述一条线性贝塞尔曲线。
  • 由 P1 至 P2 的连续点 Q1,描述一条线性贝塞尔曲线。
  • 由 Q0 至 Q1 的连续点 B(t),描述一条二次贝塞尔曲线。
  •  
二次贝塞尔曲线的结构   二次贝塞尔曲线演示动画,t in [0,1]
     

 

为建构高阶曲线,便需要相应更多的中介点。对于三次曲线,可由线性贝塞尔曲线描述的中介点 Q0Q1Q2,和由二次曲线描述的点 R0R1 所建构:

三次贝塞尔曲线的结构   三次贝塞尔曲线演示动画,t in [0,1]
     

对于四次曲线,可由线性贝塞尔曲线描述的中介点 Q0Q1Q2Q3,由二次贝塞尔曲线描述的点 R0R1R2,和由三次贝塞尔曲线描述的点 S0S1 所建构:

四次贝塞尔曲线的结构   四次贝塞尔曲线演示动画,t in [0,1]
     

P(t)=(1-t)P0+tP1 , Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
矩阵表示为:
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 。
P(t)=(1-t)2P0+2t(1-t)P1+t2P2Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
矩阵表示为:
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 。

 

  P(t)=(1-t)3P0+3t(1-t)2P1+3t2(1-t)P2+t3P
矩阵表示为:
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下, Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
(6-3-2) 
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 。 
在(6-3-2)式中,Mn+1是一个n+1阶矩阵,称为n次Bezier矩阵。
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 (6-3-3)
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
其中,
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
利用(6-3-3)式,我们可以得到任意次Bezier矩阵的显式表示,例如4次和5次Bezier矩阵为:
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 
可以证明,n次Bezier矩阵还可以表示为递推的形式:
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 (6-3-4)
Bezier曲线原理及实现代码(c++) - mappy - mappy 天下 

二、算法(c++)

工程目录是:Win32App 
vc6.0

#include<windows.h>
#include<stdlib.h>
#include<time.h>
#define NUM 10

LRESULT CALLBACK Winproc(HWND,UINT,WPARAM,LPARAM);
int WINAPI WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstanc,LPSTR lpCmdLine,int nShowCmd)
{
    MSG msg;
    static TCHAR szClassName[] = TEXT("::Bezier样条计算公式由法国雷诺汽车公司的工程师Pierm Bezier于六十年代提出");
    HWND hwnd;
    WNDCLASS wc;
    wc.cbClsExtra =0;
    wc.cbWndExtra =0;
    wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
    wc.hCursor = LoadCursor(NULL,IDC_ARROW);
    wc.hIcon = LoadIcon(NULL,IDI_APPLICATION);
    wc.hInstance = hInstance;
    wc.lpfnWndProc = Winproc;
    wc.lpszClassName = szClassName;
    wc.lpszMenuName = NULL;
    wc.style = CS_HREDRAW|CS_VREDRAW;

    if(!RegisterClass(&wc))
    {
        MessageBox(NULL,TEXT("注册失败"),TEXT("警告框"),MB_ICONERROR);
        return 0;
    }
    hwnd = CreateWindow(szClassName,szClassName,
                        WS_OVERLAPPEDWINDOW,
                        CW_USEDEFAULT,CW_USEDEFAULT,
                        CW_USEDEFAULT,CW_USEDEFAULT,
                        NULL,NULL,hInstance,NULL);

    ShowWindow(hwnd,SW_SHOWMAXIMIZED);
    UpdateWindow(hwnd);

    while(GetMessage(&msg,NULL,0,0))
    {
        TranslateMessage(&msg);
        DispatchMessage(&msg);
    }
    return msg.wParam;
}

LRESULT CALLBACK Winproc(HWND hwnd,UINT message, WPARAM wparam,LPARAM lparam)
{
  PAINTSTRUCT ps;
  HDC hdc;
  static POINT pt[NUM];
  TEXTMETRIC tm;
  static int cxClient,cyClient;
  HPEN hpen;
  int i,j,k,n,t;

  switch(message)
  {
  case WM_CREATE:
      static int cxchar;
      hdc = GetDC(hwnd);
      GetTextMetrics(hdc,&tm);
      cxchar = tm.tmAveCharWidth;
      ReleaseDC(hwnd,hdc);

  case WM_SIZE:
       cxClient = LOWORD(lparam);
      cyClient = HIWORD(lparam);
      return 0;
  case WM_PAINT:
       hdc = GetDC(hwnd);
       srand(time(0));

       Rectangle(hdc,0,0,cxClient,cyClient);
      for(i=0; i<500; i++)
          {
            SelectObject(hdc,GetStockObject(WHITE_PEN));
            PolyBezier(hdc,pt,NUM);
            for(j=0; j<NUM; j++)
            {
                pt[j].x = rand()%cxClient;
                pt[j].y = rand()%cyClient;
            }
            hpen = CreatePen(PS_INSIDEFRAME,3,RGB(rand()%256,rand()%256,rand()%256));
             DeleteObject(SelectObject(hdc,hpen));
            PolyBezier(hdc,pt,NUM);
            for(k=0; k<50000000;k++);
          }
      for(i=0; i<100;i++)
      {
        Ellipse(hdc,rand()%cxClient,rand()%cyClient,rand()%cxClient,rand()%cyClient);

        Pie(hdc,j=rand()%cxClient,k=rand()%cyClient,n=rand()%cxClient,t=rand()%cyClient,rand()%cxClient,rand()%cyClient,rand()%cxClient,rand()%cyClient) ; 

      }
       if((n=(n+j)/2)>cxchar*20) n=cxchar*20;  
        SetTextColor(hdc,RGB(rand()%256,rand()%256,rand()%256));
        TextOut(hdc,n/2,(t+k)/2,TEXT("瑾以此向Pierm Bezier致敬!"),lstrlen(TEXT("瑾以此向Pierm Bezier致敬!")));
        ReleaseDC(hwnd,hdc);
          DeleteObject(hpen);
          ValidateRect(hwnd,NULL);
   return 0;

  case WM_DESTROY:
      PostQuitMessage(0);
      return 0;
  }
  return DefWindowProc(hwnd,message,wparam,lparam);
}

本文转自博客园知识天地的博客,原文链接:Bezier曲线原理及实现代码(c++),如需转载请自行联系原博主。


相关文章
|
3月前
|
C++
C++ 语言异常处理实战:在编程潮流中坚守稳定,开启代码可靠之旅
【8月更文挑战第22天】C++的异常处理机制是确保程序稳定的关键特性。它允许程序在遇到错误时优雅地响应而非直接崩溃。通过`throw`抛出异常,并用`catch`捕获处理,可使程序控制流跳转至错误处理代码。例如,在进行除法运算或文件读取时,若发生除数为零或文件无法打开等错误,则可通过抛出异常并在调用处捕获来妥善处理这些情况。恰当使用异常处理能显著提升程序的健壮性和维护性。
72 2
|
1月前
|
C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(二)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
1月前
|
编译器 C++ 开发者
【C++】深入解析C/C++内存管理:new与delete的使用及原理(三)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
1月前
|
存储 C语言 C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(一)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
3月前
|
算法框架/工具 C++ Python
根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现
根据相机旋转矩阵求解三个轴的旋转角/欧拉角/姿态角 或 旋转矩阵与欧拉角(Euler Angles)之间的相互转换,以及python和C++代码实现
210 0
|
1月前
|
C++
C++番外篇——虚拟继承解决数据冗余和二义性的原理
C++番外篇——虚拟继承解决数据冗余和二义性的原理
39 1
|
1月前
|
Linux C语言 C++
vsCode远程执行c和c++代码并操控linux服务器完整教程
这篇文章提供了一个完整的教程,介绍如何在Visual Studio Code中配置和使用插件来远程执行C和C++代码,并操控Linux服务器,包括安装VSCode、安装插件、配置插件、配置编译工具、升级glibc和编写代码进行调试的步骤。
172 0
vsCode远程执行c和c++代码并操控linux服务器完整教程
|
2月前
|
C++
继续更新完善:C++ 结构体代码转MASM32代码
继续更新完善:C++ 结构体代码转MASM32代码
|
2月前
|
C++ Windows
HTML+JavaScript构建C++类代码一键转换MASM32代码平台
HTML+JavaScript构建C++类代码一键转换MASM32代码平台
|
2月前
|
C++
2合1,整合C++类(Class)代码转换为MASM32代码的平台
2合1,整合C++类(Class)代码转换为MASM32代码的平台