几个算法题

简介:

  1     在一个字符串中找到第一个只出现一次的字符,如输入abac,则输出b

 

本题看似很简单,开个长度为256的表,对每个字符hash计数就可以了,但很多人写的代码都存在bug,可能会发生越界访问。这是C/C++语言上的一个陷阱,C/C++中的char有三种类型:char、signed char和unsigned char。char类型的符号是由编译器指定的,一般是有符号的。在对字符进行hash时,应该先将字符转为无符号类型,不然,下标为负值时,就会出现越界访问。

 

    另外,可以用一个cache数组,记录当前找到的只出现一次的字符,避免对原字符串进行第二次遍历。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
char  get_first_only_one( const  char  str[])
{
   if  (str == NULL)   return  0;
   const  int  table_size = 256;              //最好写成: 1 << CHAR_BIT 或 UCHAR_MAX + 1
   unsigned  count[table_size] = {0};
   char       cache[table_size];
   char  *q = cache;
  
   for  ( const  char * p = str;  *p != 0; ++p)
     if  (++count[(unsigned  char )*p] == 1)  *q++ = *p;   //要先转成无符号数!!!
    
   for  ( const  char * p = cache; p < q; ++p)
     if  (count[(unsigned  char )*p] == 1)   return  *p;
    
   return  0;
}

  

  2     输出字符串的所有组合,如"abc"输出abcabacbcabc

本题假定字符串中的所有字符都不重复。根据题意,如果字符串中有n个字符,那么总共要输出2^n  1种组合。这也就意味着n不可能太大,否则的话,以现在CPU的运算速度,程序运行一次可能需要跑几百年、几千年,而且也没有那么大的硬盘来储存运行结果。因而,可以假设n小于一个常数(比如64)。

本题最简洁的方法,应该是采用递归法。遍历字符串,每个字符只能取或不取。取该字符的话,就把该字符放到结果字符串中,遍历完毕后,输出结果字符串。

n不是太小时,递归法效率很差(栈调用次数约为2^n,尾递归优化后也有2^(n-1))。注意到本题的特点,可以构照一个长度为n的01字符串(或二进制数)表示输出结果中最否包含某个字符,比如:"001"表示输出结果中不含字符a、b,只含c,即输出结果为c,而"101",表示输出结果为ac。原题就是要求输出"001"到"111"这2^n  1个组合对应的字符串。

 

 

//迭代法

void all_combine(const char str[])

{

  if (str == NULL || *str == 0) return;

  const size_t max_len = 64;

 

  size_t len =  strlen(str);

  if (len >= max_len ) {

    puts("输入字符串太长。\n你愿意等我一辈子吗?");

    return;

  }

 

  bool used[max_len] = {0};    //可以用一个64位无符号数表示used数组

  char cache[max_len];

  char *result = cache + len;

  *result = 0;

 

  while (true) {

    size_t idx = 0;

    while (used[idx]) {     //模拟二进制加法,一共有2^len – 1个状态

      used[idx] = false;

      ++result;

      if (++idx == len)  return;

    }

    used[idx] = true;

    *--result = str[idx];

    puts(result); 

  }

}

 

 

//递归解法

static void all_combine_recursive_impl(const char* str, char* result_begin, char* result_end)

{

  if (*str == 0) {

    *result_end = 0;

    if (result_begin != result_end) puts(result_begin);

    return;

  }

 

  all_combine_recursive_impl(str + 1, result_begin, result_end);      //不取*str

 

  *result_end = *str;                                           

  all_combine_recursive_impl(str + 1, result_begin, result_end + 1);  //取*str

}

 

 

void all_combine_recursive(const char str[])

{

  if (str == NULL) return;

  const size_t max_len = 64;

 

  size_t len =  strlen(str);

  if (len >= max_len ) {

    puts("输入字符串太长。\n你愿意等我一辈子吗?");

    return;

  }

 

  char result[max_len];

  all_combine_recursive_impl(str, result, result);

}

 

 

      3     根据条件找出两个数。

①      数组中,除了两个数字出现奇数次外,其它数字都出现偶数次,找出这两个数字:

②      长度为n的数组,由数字1到n组成,其中数字a不出现,数字b出现两次,其它的数字恰好出现一次,在不修改原数组的情况下,找出数字a和数字b。

 

①       数组中,只有两个数字出现奇数次,其它数字都出现偶数次。假设这两数为a、b。

 

利用 异或的性质:a xor a = 0         a xor 0 = a

以及 a xor b = b xor a   (a xor b) xor c  = a xor (b xor c)

对数组中的所有数进行异或,结果c等于(a xor b)。由于a和b不相乘,因而c不为0,假设c的二进制表示中,第m位不为0。根据第m位是否为0,可以将原数组划分为两块,

显然,a和b不可能分在同一块。由于各块中,只有a或b是奇数次出现的,因而各块所有的数的异或值要么等于a、要么等于b。

  

 

struct Pair {

  int first;

  int second;

};

 

Pair find_two_appear_once_number(const int data[], size_t len)

{

  assert(data && len >= 2);

  int xor_all = 0;

  for (size_t i = 0; i < len; ++i) xor_all ^= data[i];

 

  //下面的位运算写法只适用于采用二补数的机器。

  const int flag = xor_all & -(unsigned)xor_all;

/*

  根据C/C++标准,为了兼容一补数之类的老古董,正确的写法应该是:

  const unsigned tx = *(const unsigned*)(&xor_all);

  const unsigned ty = tx & -tx;

  const int flag = *(const int*)&ty;

*/

  int xor_a = 0;

  for (size_t i = 0; i < len; ++i) 

    if (data[i] & flag)  xor_a ^= data[i];

     

  const Pair ret = { xor_a, xor_a ^ xor_all};

  return ret;

}

 

②       有三种解法:

    方法一:如果将1到n这n个数也放入数组中,则数字a出现1次,数字b出现3次,可以利用上面的解法,通过两次遍历找出数字c与d,再通过第三次遍历,只遍历原数组,判断数字c是否在原数组中,从而确定c与d,哪个等于a,哪个是等于b。

 

方法二:对方法一进行改进。在第一次遍历时,额外计算出a与b的差值,利用该信息,可以确定前两次遍历找出的只出现奇数次的两个数,哪个是a、哪个b。

    

         方法三:只进行一次遍历,计算出a与b的差c,以及它们间的平方差d,由这两个信息可以直接解得a、b的具体值。

 

方法一与方法二,在实现中必须计算 0 xor 1 xor 2 xor 3 … xor n,这个有O(1)解法,对偶数a,显然a xor (a + 1) = 1,因而每4个数的异或值为0,即周期为4。同样的,可证明,根据(a xor b)不为0的某一位,把原数组划分两块后,各块每8个数的异或值为0,周期为8。

 

方法二与方法三,在实现中,比须考虑到计算过程中可能出现的溢出问题。避免溢出最好的方法就是将有符号数转为无符号数,利用“无符号数算术运算是采用模运算,不存在溢出”这个特点。(在32位平台,两个无符号数a、b的和是定义为:(a + b) mod 2^32。)

   

对方法三的详细解释,可参考本人的文章《避免计算过程中出现溢出的一个技巧》

 

 

//方法二

Pair find_number2(const int arr[], unsigned len)

{

  assert(arr && len >= 2);

  const unsigned* const data = (const unsigned*)arr;

  unsigned xor_all = 0, sum = 0;

  for (unsigned i = 0; i < len; ++i)  {

    const unsigned value = data[i];

    xor_all ^=  value;

    sum += value;

  }

 

  //1 + 2 + 3 + ... + len = len * (len + 1) / 2

  const unsigned sum_all = (len + 1) / 2u * (len + (len + 1) % 2u);

  const unsigned diff = sum_all - sum;

 

  // 0 xor 1 xor 2 xor 3 ... xor len   由于每2个数(2*k与2*k+1)异或值为1,每4个数的异或值为0,

  // 可证明总异或值等于arr[len % 4] (其中 arr[4] = {len, 1, len ^ 1 (= len + 1), 0})

  const unsigned xor_n = (len % 2u == 0 ? len : 1u) ^ (len % 4u / 2u);

  xor_all ^= xor_n;

 

  const unsigned flag = xor_all & -xor_all;

  unsigned xor_a = 0;

  for (unsigned i = 0; i < len; ++i)

    if (data[i] & flag) xor_a ^= data[i];

 

  //每8个数(8*k到8*k+7),根据某一位是否为1,划为两部分后,每部分的异或值均为0

  for (unsigned i = len & ~7u; i <= len; ++i) 

    if (flag & i) xor_a ^=  i;

 

  const unsigned xor_b = xor_a ^ xor_all;

 

  if (xor_a - xor_b == diff) {

    const Pair result = { xor_a, xor_b};

    return result;

  }

 

  const Pair result = { xor_b, xor_a};

  return result;

}

 

 

//方法三, 这是最高效的做法,但也比方法二麻烦很多。缺点很明显,效率太依赖于数组长度n的大小。

//32位CPU平台,长度n一定小于2^16次方时,表示一个数的平方值,可采用32位无符号数类型,效率极高。

//长度n一定小于2^31次方时,就必须用到64位无符号数类型,效率稍差。

//长度n若在[2^31, 2^32)时,表示 所有数的和sum,就必须改用64位无符号数类型,效率很差。 

       

Pair find_number3(const int arr[], unsigned len)

{

  const unsigned bits = CHAR_BIT * sizeof(unsigned);

#if SMALL_ARRAY

  const unsigned max_len = 1u << (bits / 2u);

  typedef unsigned int uint;

#else

  const unsigned max_len = 1u << (bits - 1);

  typedef unsigned long long uint;

#endif

 

  assert(arr && len >= 2 && len < max_len);

  const unsigned* const data = (const unsigned*)arr;

  unsigned sum = 0;

  uint square_sum = 0;

  for (unsigned i = 0; i < len; ++i)  {

    const unsigned value = data[i];

    sum += value;

    square_sum += (uint)value * value;     //注意两个数的乘积是否会溢出 

  }

 

  //1 + 2 + 3 + ... + len = len * (len + 1) / 2

  const uint sum_all = (len + 1) / 2u * (uint)(len + (len + 1) % 2u);

 

  //1^2 + 2^2 + 3^2 + ... + len^2 = len * (len + 1) * (2 * len + 1) / 6

  const unsigned len2 = 2u * len + 1;

  const uint square_sum_all = len2 % 3u == 0 ? len2 / 3u * sum_all : sum_all / 3u * len2;

 

  unsigned difference = (unsigned)sum_all - sum;

  uint square_difference = square_sum_all - square_sum;

  const bool is_negative = difference > INT_MAX;

 

  if (is_negative) {

    difference = -difference;

    square_difference = -square_difference;

  }

  

  assert(difference != 0 && square_difference % difference == 0);

  const unsigned sum_two = square_difference / difference;

 

  assert((sum_two + difference) % 2u == 0);

  const unsigned larger  = (sum_two + difference) / 2u;

  const unsigned smaller = (sum_two - difference) / 2u;

 

  if (is_negative) {

    const Pair result = { smaller, larger};

    return result;

  }

  const Pair result = { larger, smaller};

  return result;

}

 

 

      4     求数组(或环状数组)的最大连续(或不连续)子序列和。

本题共有4小题。遇到这类题,首先想到的应该是动态规划思想。(下面的代码中,都假定所进行的有符号数算术运算不会发生溢出。可以通过改用64位整数表些某些数,来保证这点。)

①      数组的最大连续子序列和(连续子序列和的最大值)

假设f(n)为数组的前n个元素中,以第n个元素结尾的最大连续子序列和,则对第n+1个元素(值为v),只有两种选择: 将该元素放入前n-1的最大连续子序列后、新开一个子序列。

    因而f(n+1) = max(f(n) + v, v)。显然 max{ f(i) | i = 1, 2, 3 .. }  即为所求

    

  int max_continuous_sum(const int arr[], size_t len)

  {

     assert(arr && len > 0);

     int cur_max_sum = arr[0], max_sum = cur_max_sum;

     for (size_t i = 1; i < len; ++i) {

       cur_max_sum = max(cur_max_sum + arr[i], arr[i]);

       max_sum     = max(cur_max_sum, max_sum); 

     }

     return max_sum;    

  }

 

②      环状数组的最大连续子序列和

  从环状数组中任一点A,从0开始编号,

假设环状数组中,和最大的连续子序列,是从下标i开始,到下标j(不包括j)结束。

  若i < j, 则可以从A点前面断开,问题转为“求普通数组的最大连续子序列和”。

  若i > j,由于:   所有元素和 = i->j的子序列和 + j->i的子序列和

           求“i->j的子序列和最大” 等价于求 “j->i的子序列和最小”。

           即“求普通数组的最小连续子序列和”。

 

  int max_ring_continuous_sum(const int arr[], size_t len)

  {

     assert(arr && len > 0);

     int sum = arr[0];

     int cur_min_sum = sum, min_sum = sum;

     int cur_max_sum = sum, max_sum = sum;

 

     for (size_t i = 1; i < len; ++i) {

       const int value = arr[i];

       sum += value;

      

       cur_max_sum = max(cur_max_sum + value, value);

       max_sum     = max(cur_max_sum, max_sum);

 

       cur_min_sum = min(cur_min_sum + value, value);

       min_sum     = min(cur_min_sum, min_sum);      

     }

     return max(max_sum, sum - min_sum);    

  }

  

③      数组的最大不连续子序列和(不连续子序列和的最大值)

       假设f(i)表示数组arr前i个元素的最大不连续子序列和,对第i个数(arr[i-1])只有三种选择:

   忽略该数、放在前i-2个元素的最大不连续子序列后、新开一序列。

   (由于要保证不连续,不能放在前i-1个元素的最大不连续子序列后)

   因而 f(i) = max(f(i-1), f(i-2) + arr[i-1], arr[i-1])   (i >= 3)

   初始值:f(1) = arr[0]  (另外,可设f(0) = 0,使f(2)也满足上式)。显然,f(n)即为所求。

  

  int max_discontinuous_sum(const int arr[], size_t len)

  {

     assert(arr && len > 0);

     int max_sum = arr[0], prev_max_sum = 0;

     for (size_t i = 1; i < len; ++i) {

       const int value = arr[i];

       const int old_max_sum = max_sum;

       max_sum  = max(max_sum, prev_max_sum + value, value);

       prev_max_sum = old_max_sum;      

     }

     return max_sum;    

  }

 

 

其它DP方法:

⒈ 假设f(i)表示前i个元素中,  以第i个元素结尾的最大不连续子序列和,

        g(i)表示前i个元素中,不以第i个元素结尾的最大不连续子序列和,

        (也就是前i-1个元素的最大不连续子序列和)

     则 f(i) = max(g(i-1)+arr[i-1], arr[i-1])      (i >= 3)

        g(i) = max(f(i-1), g(i-1))                 (i >= 3)

       初始值: f(2) = arr[1], g(2) = arr[0]

       当n>=2时,max(f(n), g(n)) 即为所求

 

⒉ 假设f(i)表示前i个元素中,以第i个元素结尾的最大不连续子序列和,

        g(i)表示前i个元素中,最大不连续子序列和。

     则 f(i) = max(g(i-2)+arr[i-1], arr[i-1])     (i >= 3)

        g(i) = max(f(i), g(i-1))                  (i >= 2)

      初始值: g(1) = arr[0] (可设g(0) = 0,使f(2)也满足上式)

      g(n)即为所求

   

④      环状数组的最大不连续子序列和

     假设数组长度为n,若从环状数组中任一点,从0开始编号,则结束编号为n-1。由于要保证不连续,编号为0的元素和编号为n-1的元素不能同时取,则对编号为0到n-2和编号为1到n-1的两个子数组分别求最大不连续子序列和,较大的即为所求。具体实现上,可以先求编号为0到n-1的具有最大和的不连续子序列,是否同时包含编号为0和编号为n-1的元素,若不同时包含的话,所得结果即为所求;若同时包含的话,需要再计算编号为1到n-1的子数组的最大不连续子序列和。这需要遍历数组一到二次,下面是只遍历一次的写法:

 

int max_ring_discontinuous_sum(const int arr[], size_t len)

{

   assert(arr && len > 0);

   if (len == 1) return arr[0];

   int max_sum1 = max(arr[0], arr[1]), prev_max_sum1 = arr[0];

   int max_sum2 = arr[1], prev_max_sum2 = 0;

   for (size_t i = 2; i < len - 1; ++i) {

  #if 0

     if (max_sum1 == max_sum2) {

       for (size_t j = i; j < len; ++j) {

         const int value = arr[j];

         const int old_max_sum2 = max_sum2;

         max_sum2 = max(max_sum2, prev_max_sum2 + value, value);

         prev_max_sum2 = old_max_sum2;  

       }

       return max_sum2;

     }

  #endif  

     const int value = arr[i];

     const int old_max_sum1 = max_sum1;

     const int old_max_sum2 = max_sum2;

     max_sum1 = max(max_sum1, prev_max_sum1 + value, value);

     max_sum2 = max(max_sum2, prev_max_sum2 + value, value);

     prev_max_sum1 = old_max_sum1;      

     prev_max_sum2 = old_max_sum2;      

   }

   const int value = arr[len - 1];

   max_sum2  = max(max_sum2, prev_max_sum2 + value, value);

   return max(max_sum1, max_sum2); 

}

 

 

 


==============================================================================
本文转自被遗忘的博客园博客,原文链接:http://www.cnblogs.com/rollenholt/articles/2490970.html,如需转载请自行联系原作者

相关文章
|
3月前
|
算法 机器人
算法题(3)
算法题(3)
46 5
|
4月前
|
人工智能 算法 搜索推荐
什么是算法?一切皆算法
如果有人问我什么算法?我就一句话:算法就是对一类问题的最优求解路径。
|
5月前
|
算法 调度 C#
|
7月前
|
算法 C++ 容器
【C++11新算法】all_of、any_of、none_of算法
【C++11新算法】all_of、any_of、none_of算法
154 0
|
机器学习/深度学习 存储 算法
01 算法
01 算法
62 0
|
算法
Warshall算法
Warshall算法
262 0
Warshall算法
|
算法 数据安全/隐私保护
《算法》世界 二
一.算法要素 1.数据对象的运算和操作:计算机可以执行的基本操作是以指令的形式描述的。一个计算机系统能执行的所有指令的集合,成为该计算机系统的指令系统。一个计算机的基本运算和操作有如下四类: 1.算术运算:加减乘除等运算 2.逻辑运算:或、且、非等运算 3.关系运算:大于、小于、等于、不等于等运算 4.数据传输:输入、输出、赋值等运算 2.算法的控制结构:一个算法的功能结构不仅取决于所选用的操作,而且还与各操作之间的执行顺序有关。
177 1
《算法》世界 二
|
机器学习/深度学习 算法 TensorFlow
秒懂算法 | RIB算法
结合微观行为序列的推荐(recommendation with sequences of micro behaviors, RIB)在物品序列的基础上,加入了对异构行为和停留时间的建模。对异构行为的建模使得模型能够捕捉更加细粒度的用户兴趣,而用户在某个页面上的停留时间则反映了用户对这个页面的感兴趣程度,并且停留时间越长,购买商品的转化率通常也会越高。
275 0
秒懂算法 | RIB算法