NumPy函数库基础

简介:

矩阵

复制代码
>>> from numpy import *
#求4*4随机矩阵 >>> randMat = mat(random.rand(4,4))
#求矩阵的逆矩阵
>>> invRandMat = randMat.I >>> print randMat [[ 0.78412287 0.54585614 0.98144309 0.31585072] [ 0.97836977 0.16112737 0.76317208 0.18055881] [ 0.08531485 0.7694393 0.41585813 0.41057737] [ 0.71374702 0.0135997 0.38255303 0.86235734]] >>> print invRandMat [[-4.2437784 4.5183152 2.07112621 -0.37777692] [-3.22191713 2.9476215 2.98323956 -0.85744598] [ 5.89650176 -4.70212925 -3.20462974 0.35060289] [ 0.947492 -1.70023136 -0.33963938 1.33027681]] >>> rev = randMat * invRandMat
#计算机处理误差计算,eye(4)是创建4*4单位矩阵
>>> rev - eye(4) matrix([[ 2.22044605e-16, 1.11022302e-16, 6.80011603e-16, 0.00000000e+00], [ 2.22044605e-16, -4.44089210e-16, 1.17961196e-16, -2.77555756e-17], [ -3.88578059e-16, 0.00000000e+00, -4.44089210e-16, 1.11022302e-16], [ 5.55111512e-16, -4.44089210e-16, 2.22044605e-16, 0.00000000e+00]])
复制代码

 





本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/p/6619085.html,如需转载请自行联系原作者

相关文章
|
4月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
129 1
|
4月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 4
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或数学表达式。
39 4
|
3月前
|
数据采集 数据处理 Python
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
探索数据科学前沿:Pandas与NumPy库的高级特性与应用实例
61 0
|
4月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 2
不同于ndarray,matlib函数生成的是矩阵形式。教程中详细解释了矩阵的概念,并介绍了转置矩阵的实现方式,使用T属性或函数实现。此外,还展示了如何利用`matlib.empty()`创建指定形状的新矩阵,并可选择数据类型及顺序。最后通过示例演示了矩阵填充随机数据的方法。
41 3
|
2月前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
107 5
|
3月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
96 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
4月前
|
Python
NumPy 教程 之 NumPy 矩阵库(Matrix) 8
矩阵是由行和列构成的矩形数组,其元素可以是数字、符号或表达式。教程中讲解了如何使用`numpy.matlib.rand()`创建指定大小且元素随机填充的矩阵,并演示了矩阵与ndarray之间的转换方法。此外,还介绍了如何使用T属性进行矩阵转置。示例代码展示了创建矩阵、将其转换为ndarray以及再转回矩阵的过程。
53 9
|
4月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 8
NumPy提供了多种排序方法,包括快速排序、归并排序及堆排序,各有不同的速度、最坏情况性能、工作空间和稳定性特点。此外,NumPy还提供了`numpy.extract()`函数,可以根据特定条件从数组中抽取元素。例如,在一个3x3数组中,通过定义条件选择偶数元素,并使用该函数提取这些元素。示例输出为:[0., 2., 4., 6., 8.]。
35 8
|
4月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 2
介绍NumPy` 中的排序方法与条件筛选函数。通过对比快速排序、归并排序及堆排序的速度、最坏情况性能、工作空间需求和稳定性,帮助读者选择合适的排序算法。此外,还深入讲解了 `numpy.argsort()` 的使用方法,并通过具体实例展示了如何利用该函数获取数组值从小到大的索引值,并据此重构原数组,使得其变为有序状态。对于学习 `NumPy` 排序功能来说,本教程提供了清晰且实用的指导。
47 7
|
4月前
|
机器学习/深度学习 搜索推荐 算法
NumPy 教程 之 NumPy 排序、条件筛选函数 5
NumPy中的排序方法及特性对比,包括快速排序、归并排序与堆排序的速度、最坏情况性能、工作空间及稳定性分析。并通过`numpy.argmax()`与`numpy.argmin()`函数演示了如何获取数组中最大值和最小值的索引,涵盖不同轴方向的操作,并提供了具体实例与输出结果,便于理解与实践。
32 5