[LintCode] Coins in a Line II 一条线上的硬币之二

简介:

There are n coins with different value in a line. Two players take turns to take one or two coins from left side until there are no more coins left. The player who take the coins with the most value wins.

Could you please decide the first player will win or lose?

Example

Given values array A = [1,2,2], return true.

Given A = [1,2,4], return false.

这道题是之前那道Coins in a Line的延伸,由于每个硬币的面值不同,所以那道题的数学解法就不行了,这里我们需要使用一种方法叫做极小化极大算法Minimax,这是博弈论中比较经典的一种思想,LeetCode上有一道需要用这种思路解的题Guess Number Higher or Lower II。这道题如果没有接触过相类似的题,感觉还是蛮有难度的。我们需要用DP来解,我们定义一个一维数组dp,其中dp[i]表示从i到end可取的最大钱数,大小比values数组多出一位,若n为values的长度,那么dp[n]先初始化为0。我们是从后往前推,我们想如果是values数组的最后一位,及i = n-1时,此时dp[n-1]应该初始化为values[n-1],因为拿了肯定比不拿大,钱又没有负面额;那么继续往前推,当i=n-2时,dp[n-2]应该初始化为values[n-2]+values[n-1],应为最多可以拿两个,所以最大值肯定是两个都拿;当i=n-3时,dp[n-3]应该初始化为values[n-3]+values[n-2],因为此时还剩三个硬币,你若只拿一个,那么就会给对手留两个,当然不行,所以自己要拿两个,只能给对手留一个,那么到目前位置初始化的步骤就完成了,下面就需要找递推式了:

当我们处在i处时,我们有两种选择,拿一个还是拿两个硬币,我们现在分情况讨论:

1. 当我们只拿一个硬币values[i]时,那么对手有两种选择,拿一个硬币values[i+1],或者拿两个硬币values[i+1] + values[i+2]
a) 当对手只拿一个硬币values[i+1]时,我们只能从i+2到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+2]
b) 当对手拿两个硬币values[i+1] + values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3]
由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+2]和dp[i+3]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + min(dp[i+2], dp[i+3])

2. 当我们拿两个硬币values[i] + values[i + 1]时,那么对手有两种选择,拿一个硬币values[i+2],或者拿两个硬币values[i+2] + values[i+3]
a) 当对手只拿一个硬币values[i+2]时,我们只能从i+3到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+3]
b) 当对手拿两个硬币values[i+2] + values[i+3]时,我们只能从i+4到end之间来取硬币,所以我们能拿到的最大硬币数为dp[i+4]
由于对手的目的是让我们拿较小的硬币,所以我们只能拿dp[i+3]和dp[i+4]中较小的一个,所以对于我们只拿一个硬币的情况,我们能拿到的最大钱数为values[i] + values[i + 1] + min(dp[i+3], dp[i+4])

综上所述,递推式就有了 dp[i] = max(values[i] + min(dp[i+2], dp[i+3]), values[i] + values[i + 1] + min(dp[i+3], dp[i+4]))
这样当我们算出了dp[0],知道了第一个玩家能取出的最大钱数,我们只需要算出总钱数,然后就能计算出另一个玩家能取出的钱数,二者比较就知道第一个玩家能否赢了,参见代码如下:

class Solution {
public:
    /**
     * @param values: a vector of integers
     * @return: a boolean which equals to true if the first player will win
     */
    bool firstWillWin(vector<int> &values) {
        if (values.size() <= 2) return true;
        int n = values.size(), sum = 0;
        vector<int> dp(n + 1, 0);
        dp[n - 1] = values[n - 1];
        dp[n - 2] = values[n - 2] + values[n - 1];
        dp[n - 3] = values[n - 3] + values[n - 2];
        for (int i = n - 4; i >= 0; --i) {
            dp[i] = max(values[i] + min(dp[i + 2], dp[i + 3]), values[i] + values[i + 1] + min(dp[i + 3], dp[i + 4]));
        }
        for (int d : values) {
            sum += d;
        }
        return sum - dp[0] < dp[0];
    }
};

本文转自博客园Grandyang的博客,原文链接:一条线上的硬币之二[LintCode] Coins in a Line II ,如需转载请自行联系原博主。

相关文章
|
算法 前端开发 小程序
智能排班系统 【管理系统功能、操作说明——下篇】
智能排班系统 【管理系统功能、操作说明——下篇】
1281 1
|
前端开发 Java 开发者
Java Spring Boot 目录结构介绍
Java Spring Boot 目录结构介绍
|
Java Windows
Windows 安装 JDK 8 和 JDK 17 和多版本JDK切换
Windows 安装 JDK 8 和 JDK 17 和多版本JDK切换
|
算法 安全 网络协议
万字长文聊聊Web3的组成架构(2)
万字长文聊聊Web3的组成架构
220 0
|
17小时前
|
云安全 人工智能 自然语言处理
|
5天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
309 116
|
7天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
539 50
Meta SAM3开源:让图像分割,听懂你的话