C++中类的内存空间大小(sizeof)分析

简介:     在C语言中存在关于结构体的存储空间大小是比较深入的话题,其中涉及计算机的基本原理、操作系统等。我认为对齐是C语言中让很多初学者都拿不准摸不透的问题,特别是在跨平台的情况下,对齐这种问题更加的复杂多变,每一种系统都有自己独特的对齐方式,在Windows中经常是以结构体重最大内置类型的存储单元的字节数作为对齐的基准,而在Linux中,所有的对齐都是以4个字节对齐。
    在C语言中存在关于结构体的存储空间大小是比较深入的话题,其中涉及计算机的基本原理、操作系统等。我认为对齐是C语言中让很多初学者都拿不准摸不透的问题,特别是在跨平台的情况下,对齐这种问题更加的复杂多变,每一种系统都有自己独特的对齐方式,在Windows中经常是以结构体重最大内置类型的存储单元的字节数作为对齐的基准,而在Linux中,所有的对齐都是以4个字节对齐。
 
    那么在C++中的类的内存空间大小又有哪些特殊的问题呢?
    首先,我认为对齐肯定也是其中的问题之一,对齐主要是为了加快读取的速度。
    关于对齐这个我认为基本上已经是操作系统内定好的,既然Linux与Windows存在差别,那么在C++的类中,关于对齐肯定也会存在一定的差别。关于对齐我认为只要记住平时使用的系统的对齐准则就可以了,即:在Windows中经常是以结构体重最大内置类型的存储单元的字节数作为对齐的基准,而在Linux中,所有的对齐都是以4个字节对齐。
   
    其次,我认为就应该讨论在基类中哪些成员占有存储空间,那些成员不占用内存空间?
    在C++中占存储区间的主要是非static的数据对象,主要包括各种内置的数据类型,类对象等,类中的函数声明以及函数定义都不算内存空间。但是需要注意所有的virtual函数(虚函数)共享一段内存区域,一般来说是4个字节。为什么只是包含非static数据对象呢?因为static数据并不属于类的任何一个对象,它是类的属性,而不是具体某一个对象的属性,在整个内存区域中只有一个内存区域存储对应的static数据,也就是所有的类对象共享这个数据,所以不能算做具体某一个对象或者类型的内存空间。
    因此可以认为基类对象的存储空间大小为:
    非static数据成员的大小 + 4 个字节(虚函数的存储空间)
    当然这个大小不是所有数据成员大小的叠加,而是存在一个对齐问题,具体的应该参考相关的对齐文章。
 
    最后,我认为肯定要关心一下派生类的存储空间了?
    在C++中,继承类是一个比较有用的类,继承使得各种类在基类的基础上扩展,这时候派生类中包含了基类的信息,一般而言,在基类中存在虚函数时,派生类中继承了基类的虚函数,因此派生类中已经继承了派生类的虚函数。因此继承类中不能再添加虚函数的存储空间(因为所有的虚函数共享一块内存区域),而仅仅需要考虑派生类中心添加进来的非static数据成员的内存空间大小。
    因此可以认为派生类对象的存储空间大小为:
    基类存储空间 + 派生类特有的非static数据成员的存储空间
 
   还有一类是比较特殊的情况,如果是虚继承的情况下,这时的存储空间大小就会发生变化。
    基类的存储空间 + 派生类特有的非static数据成员的存储空间 + 每一个类的虚函数存储空间。
  
    下面我采用一些例子说明上面的问题:
    对齐的问题:

点击(此处)折叠或打开

  1. class test
  2. {
  3. public:
  4.         test();
  5. private:
  6.         int a;
  7.         char c;
  8. };

  9. cout sizeof(test) endl;
  上面的代码在linux以及windows下都会输出8,而不是输出5,这个是在C语言中已经讨论过的话题,但是说明对齐在C++中也是要考虑的。关于操作系统的差异在后面用一个统一的例子说明。
    虚函数问题
    为了讨论虚函数,我们在test类中添加一个虚析构函数,然后再测试结果。   

点击(此处)折叠或打开

  1. class test
  2. {
  3. public:
  4.         test();
  5.         virtual ~test();
  6. private:
  7.         int a;
  8.         char c;
  9. };
  10. cout sizeof(test) endl;
这段代码与前面的代码没有什么区别,只是添加了一个虚函数,然后编译调试,这时候输出的结果12,也就是说增加了一个虚函数以后,类的数据成员增加了4个字节,那么是否是每一个虚函数都占有4个字节呢?其实是不会的,在test中加入一个新的虚函数virtual void get_a_c(),这时在输出的结果还是12,这说明所有的虚函数共享4个字节。
    static数据
    我们知道static数据是非对象的属性,而是类的属性,他不能算是某一个对象或者类型的存储空间,在类定义中只能声明,初始化只能在类外执行,当然有例外的。这也不做分析了。具体参看后面的大例子。
    派生类的存储空间
    派生类从基类中继承了很多成员,自己也会增加很多的成员,由于虚函数也会被继承下来,所以就是在派生类中不显式定义虚函数,在派生类中也会存在从基类继承下来的虚函数,因此虚函数不需要额外计算内存空间,而只需要增加基类的非static成员数据大小。定义如下面所示,该函数会输出20,刚好是添加的非static数据double d的存储空间大小。证明了上面的分析。

点击(此处)折叠或打开

  1. class test
  2. {
  3. public:
  4.         test();
  5.         virtual ~test();
  6.         virtual void get_a_c();
  7. private:
  8.         int a;
  9.         char c;
  10. };

  11. class derived_test:public test
  12. {
  13. public:
  14.         virtual ~derived_test();
  15. private:
  16.         double d ;
  17. };

  18. cout sizeof(derived_test) endl;
测试虚继承的类的大小:

点击(此处)折叠或打开

  1. class A
  2. {
  3.         char i[3];
  4. public:
  5.         virtual void a(){};
  6. };

  7. class B : public virtual A
  8. {
  9.         char j[3];
  10. public:
  11.         virtual void b(){}
  12. };

  13. class C: public virtual B
  14. {
  15.         char k[3];
  16. public:
  17.         virtual void c(){}
  18. };

  19. int main()
  20. {
  21.     cout "sizeof(A): " sizeof(A) endl;
  22.     cout "sizeof(B): " sizeof(B) endl;
  23.     cout "sizeof(C): " sizeof(C) endl;
  24.     return 0;
  25. }
下面采用一个比较综合的例子说明一下操作系统以及各种综合的影响分析。

点击(此处)折叠或打开

  1. #include iostream>
  2. #include string>
  3. #include vector>

  4. class test
  5. {
  6. public:
  7.     test();
  8.     virtual ~test();
  9.     virtual void get_a_c();
  10. private:
  11.     int a;
  12.     char c;
  13. };

  14. class derived_test:public test
  15. {
  16. public:
  17.     virtual ~derived_test();
  18. private:
  19.     double d ;
  20. };

  21. class base
  22. {
  23. private:
  24.     char a;
  25.     static int refrence_count;
  26.     std::string name;
  27.     double price;
  28.     std::vectordouble> dvec;
  29. public:
  30.     base();
  31.     virtual ~base();
  32.     static int get_count();
  33. };

  34. int base::get_count()
  35. {
  36.     return refrence_count;
  37. }

  38. int base::refrence_count = 0;

  39. class new_base
  40. {
  41. private:
  42.     char a;
  43.     double price;
  44.     std::vectordouble> dvec;
  45.     std::string name;
  46.     static int refrence_count;
  47. public:
  48.     new_base();
  49.     virtual ~new_base();
  50.     static int get_count();
  51. };

  52. int new_base::get_count()
  53. {
  54.     return refrence_count;
  55. }
  56. int new_base::refrence_count = 0;

  57. class derived: public base
  58. {
  59. private:
  60.     int min_qty;
  61.     double discount;
  62.     static int newp;
  63. public:
  64.     derived();
  65.     virtual ~derived(){};
  66. };

  67. class new_derived:public new_base
  68. {
  69. private:
  70.     double discount;
  71.     int min_pty;
  72.     static int newp;
  73. public:
  74.     new_derived();
  75.     virtual ~new_derived(){}
  76. };

  77. int main()
  78. {
  79.     std::cout "The size of test is " sizeof(test) std::endl;
  80.     std::cout "The size of derived_test is " sizeof(derived_test) std::endl;
  81.     std::cout "The size of base is " sizeof(base) std::endl;
  82.     std::cout "The size of new_base is " sizeof(new_base) std::endl;
  83.     std::cout "The size of derived is " sizeof(derived) std::endl;
  84.     std::cout "The size of new_derived is " sizeof(new_derived) std::endl;
  85.     
  86.     return 0;
  87. }
上面在windows和linux的结果分别如下:
windows:
img_c586b6815b436cb5a07c6e552a7357f3.jpg
Linux:
img_2951a31be5024668a250d1b9641e6e2d.jpg

从上面的结果可以之知道在两个系统下,结果是不一样的。说明操作系统也对类的存储空间大小有较大的影响。
 

   
相关文章
|
3月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
129 26
|
8月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
4月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
63 1
|
10月前
|
存储 缓存 编译器
【硬核】C++11并发:内存模型和原子类型
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
408 68
|
7月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
8月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
350 0
|
9月前
|
存储 程序员 编译器
什么是内存泄漏?C++中如何检测和解决?
大家好,我是V哥。内存泄露是编程中的常见问题,可能导致程序崩溃。特别是在金三银四跳槽季,面试官常问此问题。本文将探讨内存泄露的定义、危害、检测方法及解决策略,帮助你掌握这一关键知识点。通过学习如何正确管理内存、使用智能指针和RAII原则,避免内存泄露,提升代码健壮性。同时,了解常见的内存泄露场景,如忘记释放内存、异常处理不当等,确保在面试中不被秒杀。最后,预祝大家新的一年工作顺利,涨薪多多!关注威哥爱编程,一起成为更好的程序员。
339 0
|
11月前
|
存储 缓存 C语言
【c++】动态内存管理
本文介绍了C++中动态内存管理的新方式——`new`和`delete`操作符,详细探讨了它们的使用方法及与C语言中`malloc`/`free`的区别。文章首先回顾了C语言中的动态内存管理,接着通过代码实例展示了`new`和`delete`的基本用法,包括对内置类型和自定义类型的动态内存分配与释放。此外,文章还深入解析了`operator new`和`operator delete`的底层实现,以及定位new表达式的应用,最后总结了`malloc`/`free`与`new`/`delete`的主要差异。
182 3
|
11月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
552 4
|
12月前
|
程序员 C++ 容器
在 C++中,realloc 函数返回 NULL 时,需要手动释放原来的内存吗?
在 C++ 中,当 realloc 函数返回 NULL 时,表示内存重新分配失败,但原内存块仍然有效,因此需要手动释放原来的内存,以避免内存泄漏。