[LeetCode] Partition Equal Subset Sum 相同子集和分割

简介:

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:
Both the array size and each of the array element will not exceed 100.

Example 1:

Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

这道题给了我们一个数组,问我们这个数组能不能分成两个非空子集合,使得两个子集合的元素之和相同。那么我们想,原数组所有数字和一定是偶数,不然根本无法拆成两个和相同的子集合,那么我们只需要算出原数组的数字之和,然后除以2,就是我们的target,那么问题就转换为能不能找到一个非空子集合,使得其数字之和为target。开始我想的是遍历所有子集合,算和,但是这种方法无法通过OJ的大数据集合。于是乎,动态规划DP就是我们的不二之选。我们定义一个一维的dp数组,其中dp[i]表示数字i是否是原数组的任意个子集合之和,那么我们我们最后只需要返回dp[target]就行了。我们初始化dp[0]为true,由于题目中限制了所有数字为正数,那么我们就不用担心会出现和为0或者负数的情况。那么关键问题就是要找出递归公式了,我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新我们的dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是地推公式如下:

dp[j] = dp[j] || dp[j - nums[i]]         (nums[i] <= j <= target)

有了递推公式,那么我们就可以写出代码如下:

解法一:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if (sum % 2 == 1) return false;
        int target = sum / 2;
        vector<bool> dp(target + 1, false);
        dp[0] = true;
        for (int i = 0; i < nums.size(); ++i) {
            for (int j = target; j >= nums[i]; --j) {
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
        return dp.back();
    }
};

这道题还可以用bitset来做,感觉也十分的巧妙,bisets的大小设为5001,为啥呢,因为题目中说了数组的长度和每个数字的大小都不会超过100,那么最大的和为10000,那么一半就是5000,前面再加上个0,就是5001了。我们初始化把最低位赋值为1,然后我们算出数组之和,然后我们遍历数字,对于遍历到的数字num,我们把bits向左平移num位,然后再或上原来的bits,这样所有的可能出现的和位置上都为1。举个例子来说吧,比如对于数组[2,3]来说,初始化bits为1,然后对于数字2,bits变为101,我们可以看出来bits[2]标记为了1,然后遍历到3,bits变为了101101,我们看到bits[5],bits[3],bits[2]都分别为1了,正好代表了可能的和2,3,5,这样我们遍历玩整个数组后,去看bits[sum >> 1]是否为1即可,参见代码如下:

解法二:

class Solution {
public:
    bool canPartition(vector<int>& nums) {
        bitset<5001> bits(1);
        int sum = accumulate(nums.begin(), nums.end(), 0);
        for (int num : nums) bits |= bits << num;
        return (sum % 2 == 0) && bits[sum >> 1];
    }
};

本文转自博客园Grandyang的博客,原文链接:[LeetCode] Partition Equal Subset Sum 相同子集和分割,如需转载请自行联系原博主。

相关文章
|
5月前
|
算法
LeetCode第90题子集II
LeetCode第90题"子集II"的解题方法,通过排序和回溯算法生成所有不重复的子集,并使用一个boolean数组来避免同一层中的重复元素,展示了解决这类问题的编码技巧。
LeetCode第90题子集II
|
5月前
|
Python
【Leetcode刷题Python】131. 分割回文串
LeetCode题目131的Python编程解决方案,题目要求将给定字符串分割成所有可能的子串,且每个子串都是回文串,并返回所有可能的分割方案。
37 2
|
5月前
|
Python
【Leetcode刷题Python】416. 分割等和子集
LeetCode 416题 "分割等和子集" 的Python解决方案,使用动态规划算法判断是否可以将数组分割成两个元素和相等的子集。
45 1
|
5月前
|
索引 Python
【Leetcode刷题Python】78. 子集
LeetCode题目78的Python编程解决方案,题目要求给定一个互不相同的整数数组,返回该数组所有可能的子集(幂集),且解集中不能包含重复的子集。
32 1
|
5月前
|
算法
LeetCode第78题子集
文章分享了LeetCode第78题"子集"的解法,使用递归和回溯算法遍历所有可能的子集,展示了将子集问题视为树形结构进行遍历的解题技巧。
|
7月前
|
存储 算法 数据可视化
LeetCode 132题详解:使用动态规划与中心扩展法解决分割回文串 II 的最少分割次数问题
LeetCode 132题详解:使用动态规划与中心扩展法解决分割回文串 II 的最少分割次数问题
|
7月前
|
存储 算法 数据可视化
LeetCode 131题详解:高效分割回文串的递归与动态规划方法
LeetCode 131题详解:高效分割回文串的递归与动态规划方法
|
7月前
|
机器学习/深度学习 存储 算法
LeetCode题目 90:五种算法 回溯\迭代\位掩码\字典树\动态规划实现 子集ll
LeetCode题目 90:五种算法 回溯\迭代\位掩码\字典树\动态规划实现 子集ll
|
7月前
|
存储 机器学习/深度学习 算法
力扣78题:生成子集
力扣78题:生成子集
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行